Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Am J Pathol ; 192(12): 1712-1724, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36456043

RESUMO

Cholangiocarcinoma (CCA) is a highly malignant cancer of the biliary tree. Although studies have implicated enhancer of Zeste homolog 2 (EZH2) in CCA growth, the role of EZH2 in CCA development has not been investigated, and the mechanism for EZH2-regulated gene expression in CCA remains to be further defined. The current study used a mouse model of CCA induced by hydrodynamic tail vein injection of Notch1 intracellular domain and myristoylated-AKT plasmids. Mice with liver-specific EZH2 knockout displayed reduced CCA development. In a xenograft model, EZH2 knockdown significantly decreased CCA progression. Administration of the EZH2 inhibitor GSK126 decreased CCA tumor burden in mice. Accordingly, EZH2 depletion or inhibition reduced the growth and colony formation capability of CCA cells. Analysis of high-throughput data identified a set of 12 tumor-inhibiting genes as targets of EZH2 in CCA. The experimental results suggest that EZH2 may down-regulate these tumor-inhibiting genes through methylation of lysine 27 on histone H3 (H3K27) in the gene louses and through regulation of specific miRNAs. High mobility group box 1 was shown to facilitate the methyltransferase activity of EZH2, which is implicated in the regulation of CCA cell growth. The study shows that EZH2 promotes CCA development and progression through a complicated regulatory network involving tumor-inhibiting genes, miRNAs, and high mobility group box 1, which support targeting EZH2 as a potentially effective strategy for CCA treatment.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , MicroRNAs , Animais , Humanos , Camundongos , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos , Colangiocarcinoma/genética , Modelos Animais de Doenças , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Genes Supressores de Tumor , Histonas , Metilação , MicroRNAs/genética
2.
Hepatology ; 72(4): 1283-1297, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31990985

RESUMO

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is a highly malignant epithelial tumor of the biliary tree with poor prognosis. In the current study, we present evidence that the histone-lysine methyltransferase G9a is up-regulated in human CCA and that G9a enhances CCA cell growth and invasiveness through regulation of the Hippo pathway kinase large tumor suppressor 2 (LATS2) and yes-associated protein (YAP) signaling pathway. APPROACH AND RESULTS: Kaplan-Meier survival analysis revealed that high G9a expression is associated with poor prognosis of CCA patients. In experimental systems, depletion of G9a by small interfering RNA/short hairpin RNA or inhibition of G9a by specific pharmacological inhibitors (UNC0642 and UNC0631) significantly inhibited human CCA cell growth in vitro and in severe combined immunodeficient mice. Increased G9a expression was also observed in mouse CCA induced by hydrodynamic tail vein injection of notch intracellular domain (NICD) and myr-Akt. Administration of the G9a inhibitor UNC0642 to NICD/Akt-injected mice reduced the growth of CCA, in vivo. These findings suggest that G9a inhibition may represent an effective therapeutic strategy for the treatment of CCA. Mechanistically, our data show that G9a-derived dimethylated H3K9 (H3K9me2) silenced the expression of the Hippo pathway kinase LATS2, and this effect led to subsequent activation of oncogenic YAP. Consequently, G9a depletion or inhibition reduced the level of H3K9me2 and restored the expression of LATS2 leading to YAP inhibition. CONCLUSIONS: Our findings provide evidence for an important role of G9a in cholangiocarcinogenesis through regulation of LATS2-YAP signaling and suggest that this pathway may represent a potential therapeutic target for CCA treatment.


Assuntos
Neoplasias dos Ductos Biliares/etiologia , Proteínas de Ciclo Celular/fisiologia , Colangiocarcinoma/etiologia , Antígenos de Histocompatibilidade/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Via de Sinalização Hippo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Humanos , Camundongos , Transdução de Sinais/fisiologia
3.
Hepatology ; 72(1): 72-87, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31610032

RESUMO

BACKGROUND AND AIMS: Yes-associated protein (YAP) plays an important role in hepatocarcinogenesis, although the potential role of YAP in non-neoplastic liver diseases remains largely unknown. We report herein that YAP in Kupffer cells (KCs) enhances the production of proinflammatory cytokines and promotes the development of nonalcoholic steatohepatitis (NASH). Our data show that the expression of YAP is significantly increased in KCs of wild-type mice fed a high-fat diet (HFD). APPROACH AND RESULTS: We generated mice with macrophage/monocyte-specific deletion of YAP (YAPϕKO ) or Toll-like receptor 4 (TLR4; TLR4ϕKO ), and animals were fed an HFD or treated with lipopolysaccharide (LPS). Our data showed that YAPϕKO mice fed an HFD exhibited lower serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) levels and less hepatic inflammation when compared to their littermate controls. LPS treatment induced accumulation of YAP in KCs in vitro and in mice, which was prevented by macrophage/monocyte-specific deletion of TLR4 (TLR4ϕKO ). LPS transcriptionally activates YAP through activator protein 1 in macrophages/KCs. LPS-induced YAP further enhances expression of proinflammatory cytokines (including monocyte chemoattractant protein 1, tumor necrosis factor alpha, and interleukin 6) through YAP association with the TEA domain-binding motif in the promoter region of inflammatory cytokines. Forced overexpression of active YAP (YAP5SA) in KCs enhanced the production of proinflammatory cytokines. Treatment of HFD-fed mice with verteporfin inhibited KC activation, reduced liver inflammation, and decreased serum ALT/AST levels. Analyses of liver tissues from NASH patients reveal that YAP is increased in KCs and that level of YAP in human liver tissues is positively correlated with expression of proinflammatory cytokines. CONCLUSIONS: This study describes an important role of YAP in KCs for regulation of liver inflammation in NASH. Our findings suggest that inhibition of YAP may represent an effective therapeutic strategy for NASH treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Ciclo Celular/fisiologia , Células de Kupffer/metabolismo , Fatores de Transcrição/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/biossíntese , Células de Kupffer/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição/análise , Fatores de Transcrição/biossíntese , Proteínas de Sinalização YAP
4.
Hepatology ; 69(4): 1549-1563, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30014520

RESUMO

Functions of transforming growth factor-ß (TGF-ß) in the liver vary depending on specific cell types and their temporal response to TGF-ß during different stages of hepatocarcinogenesis (HCG). Through analysis of tumor tissues from hepatocellular carcinoma (HCC) patients, we were able to cluster hepatic epithelial cell-derived TGF-ß gene signatures in association with distinct clinical prognoses. To delineate the role of hepatic epithelial TGF-ß signaling in HCC development, we used an experimental system in which tumor-initiating hepatocytes (TICs) were isolated from TGF-ß receptor II floxed mice (Tgfbr2fl/fl ) and transplanted into syngeneic C57BL/6J mice by splenic injection. Recipient mice were then administered Cre-expressing adenovirus (Ad-Cre) to inactivate Tgfbr2 in transplanted TICs. After latency, Tgfbr2-inactivated TICs formed larger and more tumor nodules in recipient livers compared to TICs without Tgfbr2 inactivation. In vitro analyses revealed that treatment of cultured TICs with TGF-ß inhibited expression of progenitor cell factors (including SRY (sex determining region Y)-box 2 [Sox2]). RNA sequencing (RNA-seq) analysis identified H19 as one of the most up-regulated long noncoding RNA (lncRNA) in association with Tgfbr2 inactivation in TICs. Tgfbr2 inactivation by Ad-Cre led to a 5-fold increase of H19 expression in TICs. Accordingly, TGF-ß treatment reduced H19 expression. We observed that forced overexpression of Sox2 in TICs increased transcription of H19, whereas knockdown of Sox2 decreased it. Furthermore, depletion of H19 reduced the progenitor property of TICs in vitro and decreased their tumorigenic potential in vivo. Finally, we observed a low level of H19 mRNA expression in human HCC tissues from patients with the epithelial TGF-ß gene signature in association with favorable prognosis. Conclusion: Our findings describe a TGF-ß and H19 signaling axis by Sox2 in TICs that importantly regulates HCG.


Assuntos
Neoplasias Hepáticas Experimentais/etiologia , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas Experimentais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Adulto Jovem
5.
Am J Pathol ; 188(11): 2605-2616, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30366594

RESUMO

Although hedgehog (Hh) signaling pathway is inactive in adult healthy liver, it becomes activated during acute and chronic liver injury and, thus, modulates the reparative process and disease progression. We developed a novel mouse model with liver-specific knockout of Smoothened (Smo LKO), and animals were subjected to Fas-induced liver injury in vivo. Results showed that Smo deletion in hepatocytes enhances Fas-induced liver injury. Activation of Hh signaling in hepatocytes in the setting of Fas-induced injury was indicated by the fact that Jo2 treatment enhanced hepatic expression of Ptch1, Smo, and its downstream target Gli1 in control but not Smo LKO mice. Primary hepatocytes from control mice showed increased Hh signaling activation in response to Jo2 treatment in vitro. On the other hand, the Smo KO hepatocytes were devoid of Hh activation and were more susceptible to Jo2-induced apoptosis. The levels of NF-κB and related signaling molecules, including epidermal growth factor receptor and Akt, were lower in Smo KO livers/hepatocytes than in control livers/hepatocytes. Accordingly, hydrodynamic gene delivery of active NK-κB prevented Jo2-induced liver injury in the Smo LKO mice. Our findings provide important evidence that adult hepatocytes become responsive to Hh signaling through up-regulation of Smo in the setting of Fas-induced liver injury and that such alteration leads to activation of NF-κB/epidermal growth factor receptor/Akt, which counteracts Fas-induced hepatocyte apoptosis.


Assuntos
Lesão Pulmonar Aguda/etiologia , Apoptose , Receptores ErbB/metabolismo , Proteínas Hedgehog/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Smoothened/fisiologia , Receptor fas/metabolismo , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Células Cultivadas , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout
6.
Am J Pathol ; 187(10): 2288-2299, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28923203

RESUMO

Aberrant expression and regulation of miRNAs have been implicated in multiple stages of tumorigenic processes. The current study was designed to explore the biological function and epigenetic regulation of miR-34a in human cholangiocarcinoma (CCA). Our data show that the expression of miR-34a is decreased significantly in CCA cells compared with non-neoplastic biliary epithelial cells. Forced overexpression of miR-34a in CCA cells inhibited their proliferation and clonogenic capacity in vitro, and suppressed tumor xenograft growth in severe combined immunodeficiency mice. We identified three key components of the Notch pathway, Notch1, Notch2, and Jagged 1, as direct targets of miR-34a. Our further studies show that down-regulation of miR-34a is caused by Enhancer of zeste homolog 2 (EZH2)-mediated H3 lysine 27 trimethylation as well as DNA methylation. Accordingly, treatment with the EZH2 inhibitor, selective S-adenosyl-methionine-competitive small-molecule (GSK126), or the DNA methylation inhibitor, 5-Aza-2'-deoxycytidine, partially restored miR-34a levels in human CCA cells. Immunohistochemical staining and Western blot analyses showed increased EZH2 expression in human CCA tissues and cell lines. We observed that GSK126 significantly reduced CCA cell growth in vitro and intrahepatic metastasis in vivo. Our findings provide novel evidence that miR-34a expression is silenced epigenetically by EZH2 and DNA methylation, which promotes CCA cell growth through activation of the Notch pathway. Consequently, these signaling cascades may represent potential therapeutic targets for effective treatment of human CCA.


Assuntos
Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Metilação de DNA/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Inativação Gênica , MicroRNAs/metabolismo , Transdução de Sinais/genética , Animais , Sequência de Bases , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Colangiocarcinoma/patologia , Ilhas de CpG/genética , Metilação de DNA/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Indóis/farmacologia , Lisina/metabolismo , Masculino , Camundongos Endogâmicos NOD , MicroRNAs/genética , Metástase Neoplásica , Piridonas/farmacologia , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaio Tumoral de Célula-Tronco
7.
Hepatology ; 63(4): 1155-69, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26473743

RESUMO

UNLABELLED: Hedgehog (Hh) signaling plays a critical role in liver development, regeneration, injury repair, and carcinogenesis. Activation of Hh signaling has been observed in patients with nonalcoholic fatty liver diseases (NAFLD); however, the pathobiological function and regulatory mechanism of hepatic Hh signaling in the pathogenesis of NAFLD remain to be further defined. This study was designed to examine the effect and mechanism of hepatic Hh signaling in high-fat diet-induced NAFLD by using pharmacological Smoothened (Smo) inhibitors (GDC-0449 and LED225) and liver-specific Smo knockout mice. Administration of Smo inhibitors to high-fat diet-fed wild-type mice significantly reduced the numbers of activated macrophages and decreased the expression of proinflammatory cytokines (tumor necrosis factor-α, interleukin-1ß, monocyte chemoattractant protein 1, and interleukin-6) as assessed by F4/80 immunohistochemistry and quantitative reverse-transcription polymerase chain reaction, respectively. The Smo inhibitors were noted to have variable effects on hepatic fat accumulation. Liver-specific deletion of Smo also reduced macrophage activation and inhibited proinflammatory cytokine expression, while it did not significantly alter fat accumulation in the liver. Mechanistically, we found that activation of glioma-associated oncogene 1 by Hh signaling in primary hepatocytes increased the production of osteopontin, which subsequently enhanced the macrophage-mediated proinflammatory response through paracrine signaling. CONCLUSION: Hepatocyte Hh signaling can promote liver inflammation through osteopontin-mediated macrophage activation; this mechanism importantly contributes to the progression of NAFLD.


Assuntos
Anilidas/farmacologia , Dieta Hiperlipídica , Proteínas Hedgehog/metabolismo , Inflamação/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Piridinas/farmacologia , Transdução de Sinais/fisiologia , Animais , Biópsia por Agulha , Células Cultivadas , Modelos Animais de Doenças , Imuno-Histoquímica , Inflamação/prevenção & controle , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Camundongos Knockout , Distribuição Aleatória , Sensibilidade e Especificidade
8.
J Virol ; 89(1): 626-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25339775

RESUMO

UNLABELLED: Ribavirin (RBV) continues to be an important component of interferon-free hepatitis C treatment regimens, as RBV alone does not inhibit hepatitis C virus (HCV) replication effectively; the reason for this ineffectiveness has not been established. In this study, we investigated the RBV resistance mechanism using a persistently HCV-infected cell culture system. The antiviral activity of RBV against HCV was progressively impaired in the persistently infected culture, whereas interferon lambda 1 (IFN-λ1), a type III IFN, showed a strong antiviral response and induced viral clearance. We found that HCV replication in persistently infected cultures induces an autophagy response that impairs RBV uptake by preventing the expression of equilibrative nucleoside transporter 1 (ENT1). The Huh-7.5 cell line treated with an autophagy inducer, Torin 1, downregulated membrane expression of ENT1 and terminated RBV uptake. In contrast, the autophagy inhibitors hydroxychloroquine (HCQ), 3-methyladenine (3-MA), and bafilomycin A1 (BafA1) prevented ENT1 degradation and enhanced RBV antiviral activity. The HCV-induced autophagy response, as well as treatment with Torin 1, degrades clathrin heavy chain expression in a hepatoma cell line. Reduced expression of the clathrin heavy chain by HCV prevents ENT1 recycling to the plasma membrane and forces ENT1 to the lysosome for degradation. This study provides a potential mechanism for the impairment of RBV antiviral activity in persistently HCV-infected cell cultures and suggests that inhibition of the HCV-induced autophagy response could be used as a strategy for improving RBV antiviral activity against HCV infection. IMPORTANCE: The results from this work will allow a review of the competing theories of antiviral therapy development in the field of HCV virology. Ribavirin (RBV) remains an important component of interferon-free hepatitis C treatment regimens. The reason why RBV alone does not inhibit HCV replication effectively has not been established. This study provides a potential mechanism for why RBV antiviral activity is impaired in persistently HCV-infected cell cultures and suggests that inhibition of the HCV-induced autophagy response could be used as a strategy to increase RBV antiviral activity against HCV infection. Therefore, it is anticipated that this work would generate a great deal of interest, not only among virologists but also among the general public.


Assuntos
Antivirais/metabolismo , Clatrina/metabolismo , Resistência a Medicamentos , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Hepacivirus/efeitos dos fármacos , Ribavirina/metabolismo , Linhagem Celular , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Transporte Proteico
9.
Am J Pathol ; 185(12): 3141-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26598234

RESUMO

The biological functions and molecular mechanisms of miR-223 action in liver cells and liver diseases remain unclear. We therefore determined the effect and mechanism of action of miR-233 in Fas-induced hepatocyte apoptosis and liver injury. Wild-type (WT) and miR-223 knockout (KO) mice were treated i.p. with 0.5 µg/g body weight anti-Fas antibody Jo2, and the animals were monitored for survival and the extent of liver injury. Although WT mice died 4 to 6 hours after Jo2 injection (n = 6), all of the miR-223 KO mice (n = 6) survived. In comparison to WT mice, the miR-223 KO mice showed resistance to Fas-induced liver injury, as indicated by less tissue damage under histopathological examination, fewer apoptotic hepatocytes under caspase-3 immunostaining, and less elevation of serum transaminases. miR-223 KO livers showed less caspase-3, caspase-8, and caspase-9 activation and less poly (ADP-ribose) polymerase cleavage compared with WT livers (P < 0.05). Furthermore, tail vein injection of miR-223 lentiviral vector to miR-223 KO mice restored Jo2-induced liver injury. Transfection of miR-223 KO hepatocytes with miR-223 mimic enhanced Jo2-induced activation of caspase-3, caspase-8, and caspase-9, whereas transfection of WT hepatocytes with the miR-223 inhibitor attenuated Jo2-induced apoptosis. These findings demonstrate that miR-223 deficiency protects against Fas-induced hepatocyte apoptosis and liver injury. Further in vitro and in vivo data indicate that miR-223 regulates Fas-induced hepatocyte apoptosis and liver injury by targeting the insulin-like growth factor 1 receptor.


Assuntos
Apoptose/genética , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Hepatócitos/patologia , MicroRNAs/genética , Receptor IGF Tipo 1/fisiologia , Receptor fas/fisiologia , Animais , Caspases/metabolismo , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Vetores Genéticos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/fisiologia , Transfecção/métodos
10.
Am J Pathol ; 185(4): 1033-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25794705

RESUMO

Fas-induced apoptosis is involved in diverse liver diseases. Herein, we investigated the effect of Mir155 deletion on Fas-induced liver injury. Wild-type (WT) mice and Mir155 knockout (KO) mice were i.p. administered with the anti-Fas antibody (Jo2) to determine animal survival and the extent of liver injury. After Jo2 injection, the Mir155 KO mice exhibited prolonged survival versus the WT mice (P < 0.01). The Mir155 KO mice showed lower alanine aminotransferase and aspartate aminotransferase levels, less liver tissue damage, fewer apoptotic hepatocytes, and lower liver tissue caspase 3/7, 8, and 9 activities compared with the WT mice, indicating that Mir155 deletion prevents Fas-induced hepatocyte apoptosis and liver injury. Hepatocytes isolated from Mir155 KO mice also showed resistance to Fas-induced apoptosis, in vitro. Higher protein level of myeloid cell leukemia-1 (Mcl-1) was also observed in Mir155 KO hepatocytes compared to WT hepatocytes. A miR-155 binding site was identified in the 3'-untranslated region of Mcl-1 mRNA; Mcl1 was identified as a direct target of miR-155 in hepatocytes. Consistently, pretreatment with a siRNA specific for Mcl1 reversed Mir155 deletion-mediated protection against Jo2-induced liver tissue damage. Finally, restoration of Mir155 expression in Mir155 KO mice abolished the protection against Fas-induced hepatocyte apoptosis. Taken together, these findings demonstrate that deletion of Mir155 prevents Fas-induced hepatocyte apoptosis and liver injury through the up-regulation of Mcl1.


Assuntos
Hepatopatias/patologia , Hepatopatias/prevenção & controle , MicroRNAs/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Regulação para Cima , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Caspases/metabolismo , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Galactosamina , Deleção de Genes , Técnicas de Inativação de Genes , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Dados de Sequência Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Substâncias Protetoras/farmacologia , Regulação para Cima/efeitos dos fármacos , Receptor fas/metabolismo
11.
Am J Pathol ; 184(1): 214-29, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24215913

RESUMO

A stable and persistent Hepatitis C virus (HCV) replication cell culture model was developed to examine clearance of viral replication during long-term treatment using interferon-α (IFN-α), IFN-λ, and ribavirin (RBV). Persistently HCV-infected cell culture exhibited an impaired antiviral response to IFN-α+RBV combination treatment, whereas IFN-λ treatment produced a strong and sustained antiviral response that cleared HCV replication. HCV replication in persistently infected cells induced chronic endoplasmic reticulum (ER) stress and an autophagy response that selectively down-regulated the functional IFN-α receptor-1 chain of type I, but not type II (IFN-γ) or type III (IFN-λ) IFN receptors. Down-regulation of IFN-α receptor-1 resulted in defective JAK-STAT signaling, impaired STAT phosphorylation, and impaired nuclear translocation of STAT. Furthermore, HCV replication impaired RBV uptake, because of reduced expression of the nucleoside transporters ENT1 and CNT1. Silencing ER stress and the autophagy response using chemical inhibitors or siRNA additively inhibited HCV replication and induced viral clearance by the IFN-α+RBV combination treatment. These results indicate that HCV induces ER stress and that the autophagy response selectively impairs type I (but not type III) IFN signaling, which explains why IFN-λ (but not IFN-α) produced a sustained antiviral response against HCV. The results also indicate that inhibition of ER stress and of the autophagy response overcomes IFN-α+RBV resistance mechanisms associated with HCV infection.


Assuntos
Hepacivirus/fisiologia , Hepatite C/metabolismo , Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Transdução de Sinais/fisiologia , Antivirais/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Western Blotting , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Interferon Tipo I/farmacologia , Interferon gama/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
12.
Am J Pathol ; 182(5): 1629-39, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23608225

RESUMO

Recent evidence has suggested an important role of miRNAs in liver biology and diseases, although the implication of miRNAs in cholangiocarcinoma remains to be defined further. This study was designed to examine the biological function and molecular mechanism of miR-101 in cholangiocarcinogenesis and tumor progression. In situ hybridization and quantitative RT-PCR were performed to determine the expression of miR-101 in human cholangiocarcinoma tissues and cell lines. Compared with noncancerous biliary epithelial cells, the expression of miR-101 is decreased in 43.5% of human cholangiocarcinoma specimens and in all three cholangiocarcinoma cell lines used in this study. Forced overexpression of miR-101 significantly inhibited cholangiocarcinoma growth in severe combined immunodeficiency mice. miR-101-overexpressed xenograft tumor tissues showed decreased capillary densities and decreased levels of vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2). The VEGF and COX-2 mRNAs were identified as the bona fide targets of miR-101 in cholangiocarcinoma cells by both computational analysis and experimental assays. miR-101 inhibits cholangiocarcinoma angiogenesis by direct targeting of VEGF mRNA 3'untranslated region and by repression of VEGF gene transcription through inhibition of COX-2. This study established a novel tumor-suppressor role of miR-101 in cholangiocarcinoma and it suggests the possibility of targeting miR-101 and related signaling pathways for future therapy.


Assuntos
Colangiocarcinoma/irrigação sanguínea , Colangiocarcinoma/genética , MicroRNAs/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colangiocarcinoma/patologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Dados de Sequência Molecular , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Transcrição Gênica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética
13.
Hepatology ; 58(5): 1681-92, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23703729

RESUMO

UNLABELLED: MicroRNA-122 (miR-122), a pivotal liver-specific miRNA, has been implicated in several liver diseases including hepatocellular carcinoma (HCC) and hepatitis C and B viral infection. This study aimed to explore epigenetic regulation of miR-122 in human HCC cells and to examine the effect of hepatitis C virus (HCV) and hepatitis B virus (HBV). We performed microRNA microarray analysis and identified miR-122 as the most up-regulated miRNA (6-fold) in human HCC cells treated with 5'aza-2'deoxycytidine (5-Aza-CdR, DNA methylation inhibitor) and 4-phenylbutyric acid (PBA, histone deacetylation inhibitor). Real-time polymerase chain reaction (PCR) analysis verified significant up-regulation of miR-122 by 5'aza and PBA in HCC cells, and to a lesser extent in primary hepatocytes. Peroxisome proliferator activated receptor-gamma (PPARγ) and retinoid X receptor alpha (RXRα) complex was found to be associated with the DR1 and DR2 consensus site in the miR-122 gene promoter which enhanced miR-122 gene transcription. 5-Aza-CdR and PBA treatment increased the association of PPARγ/RXRα, but decreased the association of its corepressors (N-CoR and SMRT), with the miR-122 DR1 and DR2 motifs. The aforementioned DNA-protein complex also contains SUV39H1, an H3K9 histone methyl transferase, which down-regulates miR-122 expression. CONCLUSIONS: These findings establish a novel role of the PPARγ binding complex for epigenetic regulation of miR-122 in human HCC cells. Moreover, we show that hepatitis B virus X protein binds PPARγ and inhibits the transcription of miR-122, whereas hepatitis C viral particles exhibited no significant effect; these findings provide mechanistic insight into reduction of miR-122 in patients with HBV but not with HCV infection.


Assuntos
Carcinoma Hepatocelular/genética , Epigênese Genética , Neoplasias Hepáticas/genética , MicroRNAs/fisiologia , PPAR gama/fisiologia , Transativadores/fisiologia , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Carcinoma Hepatocelular/etiologia , Decitabina , Células Hep G2 , Hepatite C/complicações , Humanos , Neoplasias Hepáticas/etiologia , Metiltransferases/fisiologia , MicroRNAs/genética , Fenilbutiratos/farmacologia , Regiões Promotoras Genéticas , Proteínas Repressoras/fisiologia , Proteínas Virais Reguladoras e Acessórias
14.
BMC Cancer ; 14: 481, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24993937

RESUMO

BACKGROUND: The role of omega-3 polyunsaturated fatty acids (ω3-PUFAs) in cancer prevention has been demonstrated; however, the exact molecular mechanisms underlying the anticancer activity of ω3-PUFAs are not fully understood. Here, we investigated the relationship between the anticancer action of a specific ω3-PUFA docosahexaenoic acid (DHA), and the conventional mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase (ERK), c-JUN N-terminal kinase (JNK) and p38 whose dysregulation has been implicated in human cancers. METHODS: MTT assays were carried out to determine cell viability of cancer cell lines (PA-1, H1299, D54MG and SiHa) from different origins. Apoptosis was confirmed by TUNEL staining, DNA fragmentation analysis and caspase activity assays. Activities of the conventional MAPKs were monitored by their phosphorylation levels using immunoblotting and immunocytochemistry analysis. Reactive oxygen species (ROS) production was measured by flow cytometry and microscopy using fluorescent probes for general ROS and mitochondrial superoxide. RESULTS: DHA treatment decreased cell viability and induced apoptotic cell death in all four studied cell lines. DHA-induced apoptosis was coupled to the activation of the conventional MAPKs, and knockdown of ERK/JNK/p38 by small interfering RNAs reduced the apoptosis induced by DHA, indicating that the pro-apoptotic effect of DHA is mediated by MAPKs activation. Further study revealed that the DHA-induced MAPKs activation and apoptosis was associated with mitochondrial ROS overproduction and malfunction, and that ROS inhibition remarkably reversed these effects of DHA. CONCLUSION: Together, these results indicate that DHA-induced MAPKs activation is dependent on its capacity to provoke mitochondrial ROS generation, and accounts for its cytotoxic effect in human cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/enzimologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
BMC Cancer ; 14: 36, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24447339

RESUMO

BACKGROUND: Combination therapy is key to improving cancer treatment efficacy. Phorbol 12-myristate 13-acetate (PMA), a well-known PKC activator, increases the cytotoxicity of several anticancer drugs. Apicularen A induces cytotoxicity in tumor cells through disrupting microtubule networks by tubulin down-regulation. In this study, we examined whether PMA increases apicularen A-induced cytotoxicity in HeLa cells. METHODS: Cell viability was examined by thiazolyl blue tetrazolium (MTT) assays. To investigate apoptotic potential of apicularen A, DNA fragmentation assays were performed followed by extracting genomic DNA, and caspase-3 activity assays were performed by fluorescence assays using fluorogenic substrate. The cell cycle distribution induced by combination with PMA and apicularen A was examined by flow cytometry after staining with propidium iodide (PI). The expression levels of target proteins were measured by Western blotting analysis using specific antibodies, and α-tubulin mRNA levels were assessed by reverse transcription polymerase chain reaction (RT-PCR). To examine the effect of combination of PMA and apicularen A on the microtubule architecture, α-tubulin protein and nuclei were visualized by immunofluorescence staining using an anti-α-tubulin antibody and PI, respectively. RESULTS: We found that apicularen A induced caspase-dependent apoptosis in HeLa cells. PMA synergistically increased cytotoxicity and apoptotic sub-G1 population induced by apicularen A. These effects were completely blocked by the PKC inhibitors Ro31-8220 and Go6983, while caspase inhibition by Z-VAD-fmk did not prevent cytotoxicity. RNA interference using siRNA against PKCα, but not PKCß and PKCγ, inhibited cytotoxicity induced by combination PMA and apicularen A. PMA increased the apicularen A-induced disruption of microtubule networks by further decreasing α- and ß-tubulin protein levels in a PKC-dependent manner. CONCLUSIONS: These results suggest that the synergy between PMA and apicularen A is involved by PKCα activation and microtubule disruption, and that may inform the development of novel approaches to treat cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Microtúbulos/efeitos dos fármacos , Neoplasias do Colo do Útero/metabolismo , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Células HeLa , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/patologia , Proteína Quinase C-alfa/antagonistas & inibidores , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo , Transfecção , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
16.
Food Sci Anim Resour ; 44(1): 204-215, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229856

RESUMO

This study was designed to examine the effect of Lactilactobacillus curvatus LB-P9 on hair regeneration. The treatment of LB-P9 conditioned medium increased the proliferation of both hair follicle dermal papilla cells and hair germinal matrix cells (hGMCs). Moreover, the expression levels of hair growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor 7 were significantly elevated in hGMCs co-cultured with LB-P9. After time-synchronized depilation, mice were orally administered with either 4×107 colony forming unit (CFU) of LB-P9 (low dose) or 4×108 CFU of LB-P9 (high dose), once daily for 4 weeks. Compared with the vehicle (phosphate-buffered saline)-administrated group, the LB-P9-treated groups exhibited accelerated hair regrowth rate and enhanced hair thickness in a dose-dependent manner. Supporting this observation, both hair follicle numbers and the dermal thickness in skin tissues of the LB-P9-treated groups were increased, compared to those of the vehicle-treated group. These results might be explained by the increased level of ß-catenin and number of hair follicle stem cells (CD34+CD49f+ cells) in the skin tissues of mice administered with LB-P9, compared to the vehicle-treated mice. Also, increased serum levels of hair growth factors such as VEGF and insulin-like growth factor-1, and superoxide dismutase were found in the LB-P9-treated groups, compared to those of the vehicle-treated group. Taken together, these results might demonstrate that the oral administration of LB-P9 promotes hair regeneration by the enhancement of dermal papilla proliferation through the stimulation of hair growth factor production.

17.
Biochem Biophys Res Commun ; 434(3): 634-40, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23583412

RESUMO

Apicularen A is a novel antitumor agent and strongly induces death in tumor cells. In this study, we synthesized apicularen A acetate, an acetyl derivative of apicularen A, and investigated its antitumor effect and mechanism in HM7 colon cancer cells. Apicularen A acetate induced apoptotic cell death and caspase-3 activation; however, the pan-caspase inhibitor Z-VAD-fmk could not prevent this cell death. Apicularen A acetate induced the loss of mitochondrial membrane potential and the translocation of apoptosis-inducing factor (AIF) from mitochondria. In addition, apicularen A acetate significantly decreased tubulin mRNA and protein levels and induced disruption of microtubule networks. Taken together, these results indicate that the mechanism of apicularen A acetate involves caspase-independent apoptotic cell death and disruption of microtubule architecture.


Assuntos
Fator de Indução de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Neoplasias do Colo/patologia , Regulação para Baixo/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Western Blotting , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microtúbulos/metabolismo , Transporte Proteico , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Mol Cancer Res ; 20(3): 350-360, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34880125

RESUMO

Cholangiocarcinoma (CCA) is a lethal malignancy with few therapeutic options. NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) has been shown to inhibit CCA cell growth in vitro and in xenograft models. However, the role of 15-PGDH in CCA development has not been investigated and the mechanism for 15-PGDH gene regulation remains unclear. Here, we evaluated the role of 15-PGDH in CCA development by using a mouse model with hydrodynamic tail vein injection of transposase-based plasmids expressing Notch1 intracellular domain and myr-Akt, with or without co-injection of 15-PGDH expression plasmids. Our results reveal that 15-PGDH overexpression effectively prevents CCA development. Through patient data mining and experimental approaches, we provide novel evidences that 15-PGDH is epigenetically silenced by histone methyltransferase G9a. We observe that 15-PGDH and G9a expressions are inversely correlated in both human and mouse CCAs. By using CCA cells and mouse models, we show that G9a inhibition restores 15-PGDH expression and inhibited CCA in vitro and in vivo. Mechanistically, our data indicate that G9a is recruited to 15-PGDH gene promoter via protein-protein interaction with the E-box binding Myc/Max heterodimer. The recruited G9a then silences 15-PGDH gene through enhanced methylation of H3K9. Our further experiments have led to the identification of STAT4 as a key transcription factor involved in the regulation of 15-PGDH by G9a. Collectively, our findings disclose a novel G9a-15PGDH signaling axis which is importantly implicated in CCA development and progression. IMPLICATIONS: The current study describes a novel G9a-15PGDH signaling axis which is importantly implicated in CCA development and progression.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/patologia , Epigênese Genética , Antígenos de Histocompatibilidade/genética , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Hidroxiprostaglandina Desidrogenases
19.
BMC Cancer ; 11: 307, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21781302

RESUMO

BACKGROUND: Polysaccharides extracted from the Phellinus linteus (PL) mushroom are known to possess anti-tumor effects. However, the molecular mechanisms responsible for the anti-tumor properties of PL remain to be explored. Experiments were carried out to unravel the anticancer effects of PL. METHODS: The anti-cancer effects of PL were examined in SW480 colon cancer cells by evaluating cell proliferation, invasion and matrix metallo-proteinase (MMP) activity. The anti-angiogenic effects of PL were examined by assessing human umbilical vein endothelial cell (HUVEC) proliferation and capillary tube formation. The in vivo effect of PL was evaluated in an athymic nude mouse SW480 tumor engraft model. RESULTS: PL (125-1000 µg/mL) significantly inhibited cell proliferation and decreased ß-catenin expression in SW480 cells. Expression of cyclin D1, one of the downstream-regulated genes of ß-catenin, and T-cell factor/lymphocyte enhancer binding factor (TCF/LEF) transcription activity were also significantly reduced by PL treatment. PL inhibited in vitro invasion and motility as well as the activity of MMP-9. In addition, PL treatment inhibited HUVEC proliferation and capillary tube formation. Tumor growth of SW480 cells implanted into nude mice was significantly decreased as a consequence of PL treatment, and tumor tissues from treated animals showed an increase in the apoptotic index and a decrease in ß-catenin expression. Moreover, the proliferation index and microvessel density were significantly decreased. CONCLUSIONS: These data suggest that PL suppresses tumor growth, invasion, and angiogenesis through the inhibition of Wnt/ß-catenin signaling in certain colon cancer cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Polissacarídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Agaricales/química , Animais , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Ciclina D1/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Neovascularização Patológica/prevenção & controle , Phellinus , Extratos Vegetais , Polissacarídeos/metabolismo , Ligação Proteica , Fatores de Transcrição TCF/metabolismo , Proteínas Wnt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/metabolismo
20.
Pancreatology ; 11(6): 574-84, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22213040

RESUMO

BACKGROUND/AIMS: ω3-polyunsaturated fatty acids (ω3- PUFAs) are known to possess anticancer properties. However, the relationship between ω3-PUFAs and ß-catenin, one of the key components of the Wnt signaling pathway, in human pancreatic cancer remains poorly characterized. METHODS: Human pancreatic cancer cells (SW1990 and PANC-1) were exposed to two ω3-PUFAs, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), to investigate the relationship between ω3-PUFAs and the Wnt/ß-catenin signaling pathway in vitro. Mouse pancreatic cancer (PANC02) cells were implanted into fat-1 transgenic mice, which express ω3 desaturases and result in elevated levels of ω3-PUFAs endogenously. The tumor size, levels of Wnt/ß-catenin signaling molecules and apoptosis levels were analyzed to examine the influence of ω3-PUFAs in vivo. RESULTS: DHA and EPA significantly inhibited cell growth and increased cell death in pancreatic cancer cells. DHA also reduced ß-catenin expression, T cell factor/lymphoid-enhancing factor reporter activity and induced ß-catenin/Axin/GSK-3ß complex formation, a known precursor to ß-catenin degradation. Furthermore, Wnt3a, a natural canonical Wnt pathway ligand, reversed DHA-induced growth inhibition in PANC-1 cells. Immunohistochemical analysis showed aberrant upregulation and increased nuclear staining of ß-catenin in tumor tissues from pancreatic cancer patients. However, ß-catenin levels in tumor tissues from fat-1 transgenic mice were reduced with a significant increase in apoptosis compared with those from control mice. CONCLUSION: ω3-PUFAs may be an effective therapy for the chemoprevention and treatment of human pancreatic cancer. and IAP.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Via de Sinalização Wnt/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa