RESUMO
UHPLC-Q-Exactive Orbitrap MS/MS was used to systematically analyze and compare the alkaloids in Aconiti Kusnezoffii Radix, Aconiti Radix, and Aconiti Lateralis Radix Praeparata. After the samples were pretreated in the solid-phase extraction cartridges, 0.1% ammonium hydroxide(A)-acetonitrile(B) was used for gradient elution. The LC-MS method for characterization of alkaloids in the three herbal medicines was established in ESI positive ion mode to collect high resolution MS data of reference substances and samples. On the basis of the information of reference substance cracking behavior, retention time, accurate molecular mass, and related literature, a total of 155 alkaloids were identified in Aconiti Kusnezoffii Radix, Aconiti Radix, and Aconiti Lateralis Radix Prae-parata. Specifically, 130, 127, and 92 alkaloids were identified in Aconiti Kusnezoffii Radix, Aconiti Radix, and Aconiti Lateralis Radix Praeparata, respectively. Monoester alkaloids and amino-alcohol alkaloids were dominant in the three herbal medicines, and the alkaloids in Aconiti Kusnezoffii Radix and Aconiti Radix were similar. This paper can provide a reference for elucidating the pharmacological effects and clinical application differences of the three herbal medicines produced from plants of Aconitum.
Assuntos
Aconitum , Alcaloides , Medicamentos de Ervas Chinesas , Plantas Medicinais , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodosRESUMO
Naringenin (5,7,4'-trihydroxyflavanone), belonging to the flavanone subclass, is associated with beneficial effects such as anti-oxidation, anticancer, anti-inflammatory, and anti-diabetic effects. Drug metabolism plays an essential role in drug discovery and clinical safety. However, due to the interference of numerous endogenous substances in metabolic samples, the identification and efficient characterization of drug metabolites are difficult. Here, ultra-high-performance liquid chromatography (UHPLC) coupled with high-resolution mass spectrometry was used to obtain mass spectral information of plasma (processed by three methods), urine, feces, liver tissue, and liver microsome samples. Moreover, a novel analytical strategy named "ion induction and deduction" was proposed to systematically screen and identify naringenin metabolites in vivo and in vitro. The analysis strategy was accomplished by the establishment of multiple "net-hubs" and the induction and deduction of fragmentation behavior. Finally, 78 naringenin metabolites were detected and identified from samples of rat plasma, urine, feces, liver tissue, and liver microsomes, of which 67 were detected in vivo and 13 were detected in vitro. Naringenin primarily underwent glucuronidation, sulfation, oxidation, methylation, ring fission, and conversion into phenolic acid and their composite reactions. The current study provides significant help in extracting target information from complex samples and sets the foundation for other pharmacology and toxicology research.
Assuntos
Flavanonas , Ratos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas , Microssomos HepáticosRESUMO
The repetitive applications of vaccine boosters have been brought up in face of continuous emergence of SARS-CoV-2 variants with neutralization escape mutations, but their protective efficacy and potential adverse effects remain largely unknown. Here, we compared the humoral and cellular immune responses of an extended course of recombinant receptor binding domain (RBD) vaccine boosters with those from conventional immunization strategy in a Balb/c mice model. Multiple vaccine boosters after the conventional vaccination course significantly decreased RBD-specific antibody titers and serum neutralizing efficacy against the Delta and Omicron variants, and profoundly impaired CD4+ and CD8+T cell activation and increased PD-1 and LAG-3 expressions in these T cells. Mechanistically, we confirmed that extended vaccination with RBD boosters overturned the protective immune memories by promoting adaptive immune tolerance. Our findings demonstrate potential risks with the continuous use of SARS-CoV-2 vaccine boosters, providing immediate implications for the global COVID-19 vaccination enhancement strategies.