Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cancer ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941509

RESUMO

Clinical trials conducted by the Intergroup Rhabdomyosarcoma (RMS) Study Group and the Children's Oncology Group have been pivotal to establishing current standards for diagnosis and therapy for RMS. Recent advancements in understanding the biology and clinical behavior of RMS have led to more nuanced approaches to diagnosis, risk stratification, and treatment. The complexities introduced by these advancements, coupled with the rarity of RMS, pose challenges to conducting large-scale phase 3 clinical trials to evaluate new treatment strategies for RMS. Given these challenges, systematic planning of future clinical trials in RMS is paramount to address pertinent questions regarding the therapeutic efficacy of drugs, biomarkers of response, treatment-related toxicity, and patient quality of life. Herein, the authors outline the proposed strategic approach of the Children's Oncology Group Soft Tissue Sarcoma Committee to the next generation of RMS clinical trials, focusing on five themes: improved novel agent identification and preclinical to clinical translation, more efficient trial development and implementation, expanded opportunities for knowledge generation during trials, therapeutic toxicity reduction and quality of life, and patient engagement.

2.
Mol Cell ; 57(6): 1011-1021, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25728769

RESUMO

Eosinophils are white blood cells that function in innate immunity and participate in the pathogenesis of various inflammatory and neoplastic disorders. Their secretory granules contain four cytotoxic proteins, including the eosinophil major basic protein (MBP-1). How MBP-1 toxicity is controlled within the eosinophil itself and activated upon extracellular release is unknown. Here we show how intragranular MBP-1 nanocrystals restrain toxicity, enabling its safe storage, and characterize them with an X-ray-free electron laser. Following eosinophil activation, MBP-1 toxicity is triggered by granule acidification, followed by extracellular aggregation, which mediates the damage to pathogens and host cells. Larger non-toxic amyloid plaques are also present in tissues of eosinophilic patients in a feedback mechanism that likely limits tissue damage under pathological conditions of MBP-1 oversecretion. Our results suggest that MBP-1 aggregation is important for innate immunity and immunopathology mediated by eosinophils and clarify how its polymorphic self-association pathways regulate toxicity intra- and extracellularly.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Eosinófilos/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Celulite (Flegmão)/metabolismo , Celulite (Flegmão)/patologia , Proteínas de Ligação a DNA/toxicidade , Dermatite Atópica/metabolismo , Dermatite Atópica/patologia , Eosinofilia/metabolismo , Eosinofilia/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Escherichia coli/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/fisiologia , Camundongos Endogâmicos C57BL , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Vesículas Secretórias/metabolismo , Pele/efeitos dos fármacos , Pele/patologia
3.
Mol Cell ; 38(6): 889-99, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20620958

RESUMO

HET-S (97% identical to HET-s) has an N-terminal globular domain that exerts a prion-inhibitory effect in cis on its own prion-forming domain (PFD) and in trans on HET-s prion propagation. We show that HET-S fails to form fibrils in vitro and that it inhibits HET-s PFD fibrillization in trans. In vivo analyses indicate that beta-structuring of the HET-S PFD is required for HET-S activity. The crystal structures of the globular domains of HET-s and HET-S are highly similar, comprising a helical fold, while NMR-based characterizations revealed no differences in the conformations of the PFDs. We conclude that prion inhibition is not encoded by structure but rather in stability and oligomerization properties: when HET-S forms a prion seed or is incorporated into a HET-s fibril via its PFD, the beta-structuring in this domain induces a change in its globular domain, generating a molecular species that is incompetent for fibril growth.


Assuntos
Proteínas Fúngicas/química , Príons/química , Sequência de Aminoácidos , Cristalografia por Raios X , Proteínas Fúngicas/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Príons/genética , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Soluções
4.
Proc Natl Acad Sci U S A ; 108(10): 4194-9, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21325059

RESUMO

The aggregation of proteins into oligomers and amyloid fibrils is characteristic of several neurodegenerative diseases, including Parkinson disease (PD). In PD, the process of aggregation of α-synuclein (α-syn) from monomers, via oligomeric intermediates, into amyloid fibrils is considered the disease-causative toxic mechanism. We developed α-syn mutants that promote oligomer or fibril formation and tested the toxicity of these mutants by using a rat lentivirus system to investigate loss of dopaminergic neurons in the substantia nigra. The most severe dopaminergic loss in the substantia nigra is observed in animals with the α-syn variants that form oligomers (i.e., E57K and E35K), whereas the α-syn variants that form fibrils very quickly are less toxic. We show that α-syn oligomers are toxic in vivo and that α-syn oligomers might interact with and potentially disrupt membranes.


Assuntos
Biopolímeros/toxicidade , alfa-Sinucleína/toxicidade , Animais , Encéfalo/metabolismo , Lentivirus/genética , Ratos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
5.
Cell Rep ; 43(4): 114084, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38583154

RESUMO

Eosinophils play a crucial role in host defense while also contributing to immunopathology through the release of inflammatory mediators. Characterized by distinctive cytoplasmic granules, eosinophils securely store and rapidly release various proteins exhibiting high toxicity upon extracellular release. Among these, major basic protein 1 (MBP-1) emerges as an important mediator in eosinophil function against pathogens and in eosinophil-associated diseases. While MBP-1 targets both microorganisms and host cells, its precise mechanism remains elusive. We demonstrate that formation of small pores by MBP-1 in lipid bilayers induces membrane permeabilization and disrupts potassium balance. Additionally, we reveal that mitochondrial DNA (mtDNA) present in eosinophil extracellular traps (EETs) amplifies MBP-1 toxic effects, underscoring the pivotal role of mtDNA in EETs. Furthermore, we present evidence indicating that absence of CpG methylation in mtDNA contributes to the regulation of MBP-1-mediated toxicity. Taken together, our data suggest that the mtDNA scaffold within extracellular traps promotes MBP-1 toxicity.


Assuntos
DNA Mitocondrial , DNA Mitocondrial/metabolismo , DNA Mitocondrial/genética , Humanos , Animais , Armadilhas Extracelulares/metabolismo , Membrana Celular/metabolismo , Eosinófilos/metabolismo , Metilação de DNA , Ilhas de CpG , Bicamadas Lipídicas/metabolismo
6.
Cell Rep Methods ; 4(5): 100772, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38744290

RESUMO

Localized cutaneous neurofibromas (cNFs) are benign tumors that arise in the dermis of patients affected by neurofibromatosis type 1 syndrome. cNFs are benign lesions: they do not undergo malignant transformation or metastasize. Nevertheless, they can cover a significant proportion of the body, with some individuals developing hundreds to thousands of lesions. cNFs can cause pain, itching, and disfigurement resulting in substantial socio-emotional repercussions. Currently, surgery and laser desiccation are the sole treatment options but may result in scarring and potential regrowth from incomplete removal. To identify effective systemic therapies, we introduce an approach to establish and screen cNF organoids. We optimized conditions to support the ex vivo growth of genomically diverse cNFs. Patient-derived cNF organoids closely recapitulate cellular and molecular features of parental tumors as measured by immunohistopathology, methylation, RNA sequencing, and flow cytometry. Our cNF organoid platform enables rapid screening of hundreds of compounds in a patient- and tumor-specific manner.


Assuntos
Neurofibroma , Organoides , Neoplasias Cutâneas , Humanos , Organoides/patologia , Neoplasias Cutâneas/patologia , Neurofibroma/patologia , Neurofibroma/cirurgia , Neurofibromatose 1/patologia
7.
Nat Commun ; 14(1): 3168, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280220

RESUMO

High throughput drug screening is an established approach to investigate tumor biology and identify therapeutic leads. Traditional platforms use two-dimensional cultures which do not accurately reflect the biology of human tumors. More clinically relevant model systems such as three-dimensional tumor organoids can be difficult to scale and screen. Manually seeded organoids coupled to destructive endpoint assays allow for the characterization of treatment response, but do not capture transitory changes and intra-sample heterogeneity underlying clinically observed resistance to therapy. We present a pipeline to generate bioprinted tumor organoids linked to label-free, time-resolved imaging via high-speed live cell interferometry (HSLCI) and machine learning-based quantitation of individual organoids. Bioprinting cells gives rise to 3D structures with unaltered tumor histology and gene expression profiles. HSLCI imaging in tandem with machine learning-based segmentation and classification tools enables accurate, label-free parallel mass measurements for thousands of organoids. We demonstrate that this strategy identifies organoids transiently or persistently sensitive or resistant to specific therapies, information that could be used to guide rapid therapy selection.


Assuntos
Bioimpressão , Neoplasias , Humanos , Avaliação Pré-Clínica de Medicamentos/métodos , Organoides/metabolismo , Neoplasias/patologia , Interferometria
8.
bioRxiv ; 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37292676

RESUMO

Sarcomas are a family of rare malignancies composed of over 100 distinct histological subtypes. The rarity of sarcoma poses significant challenges in conducting clinical trials to identify effective therapies, to the point that many rarer subtypes of sarcoma do not have standard-of-care treatment. Even for established regimens, there can be substantial heterogeneity in responses. Overall, novel, personalized approaches for identifying effective treatments are needed to improve patient out-comes. Patient-derived tumor organoids (PDTOs) are clinically relevant models representative of the physiological behavior of tumors across an array of malignancies. Here, we use PDTOs as a tool to better understand the biology of individual tumors and characterize the landscape of drug resistance and sensitivity in sarcoma. We collected n=194 specimens from n=126 sarcoma patients, spanning 24 distinct subtypes. We characterized PDTOs established from over 120 biopsy, resection, and metastasectomy samples. We leveraged our organoid high-throughput drug screening pipeline to test the efficacy of chemotherapeutics, targeted agents, and combination therapies, with results available within a week from tissue collection. Sarcoma PDTOs showed patient-specific growth characteristics and subtype-specific histopathology. Organoid sensitivity correlated with diagnostic subtype, patient age at diagnosis, lesion type, prior treatment history, and disease trajectory for a subset of the compounds screened. We found 90 biological pathways that were implicated in response to treatment of bone and soft tissue sarcoma organoids. By comparing functional responses of organoids and genetic features of the tumors, we show how PDTO drug screening can provide an orthogonal set of information to facilitate optimal drug selection, avoid ineffective therapies, and mirror patient outcomes in sarcoma. In aggregate, we were able to identify at least one effective FDA-approved or NCCN-recommended regimen for 59% of the specimens tested, providing an estimate of the proportion of immediately actionable information identified through our pipeline. Highlights: Standardized organoid culture preserve unique sarcoma histopathological featuresDrug screening on patient-derived sarcoma organoids provides sensitivity information that correlates with clinical features and yields actionable information for treatment guidanceHigh-throughput screenings provide orthogonal information to genetic sequencingSarcoma organoid response to treatment correlates with patient response to therapyLarge scale, functional precision medicine programs for rare cancers are feasible within a single institution.

9.
Sci Adv ; 8(7): eabl3674, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35171675

RESUMO

Chordomas are rare tumors of notochordal origin, most commonly arising in the sacrum or skull base. Chordomas are considered insensitive to conventional chemotherapy, and their rarity complicates running timely and adequately powered trials to identify effective treatments. Therefore, there is a need for discovery of novel therapeutic approaches. Patient-derived organoids can accelerate drug discovery and development studies and predict patient responses to therapy. In this proof-of-concept study, we successfully established organoids from seven chordoma tumor samples obtained from five patients presenting with tumors in different sites and stages of disease. The organoids recapitulated features of the original parent tumors and inter- as well as intrapatient heterogeneity. High-throughput screenings performed on the organoids highlighted targeted agents such as PI3K/mTOR, EGFR, and JAK2/STAT3 inhibitors among the most effective molecules. Pathway analysis underscored how the NF-κB and IGF-1R pathways are sensitive to perturbations and potential targets to pursue for combination therapy of chordoma.


Assuntos
Antineoplásicos , Cordoma , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cordoma/tratamento farmacológico , Cordoma/metabolismo , Cordoma/patologia , Descoberta de Drogas , Humanos , Organoides/metabolismo , Resultado do Tratamento
10.
Artigo em Inglês | MEDLINE | ID: mdl-37325195

RESUMO

Organoids have attracted increasing attention because they are simple tissue-engineered cell-based in vitro models that recapitulate many aspects of the complex structure and function of the corresponding in vivo tissue. They can be dissected and interrogated for fundamental mechanistic studies on development, regeneration, and repair in human tissues. Organoids can also be used in diagnostics, disease modeling, drug discovery, and personalized medicine. Organoids are derived from either pluripotent or tissue-resident stem (embryonic or adult) or progenitor or differentiated cells from healthy or diseased tissues, such as tumors. To date, numerous organoid engineering strategies that support organoid culture and growth, proliferation, differentiation and maturation have been reported. This Primer serves to highlight the rationale underlying the selection and development of these materials and methods to control the cellular/tissue niche; and therefore, structure and function of the engineered organoid. We also discuss key considerations for generating robust organoids, such as those related to cell isolation and seeding, matrix and soluble factor selection, physical cues and integration. The general standards for data quality, reproducibility and deposition within the organoid community is also outlined. Lastly, we conclude by elaborating on the limitations of organoids in different applications, and key priorities in organoid engineering for the coming years.

11.
J Am Chem Soc ; 133(48): 19366-75, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21978222

RESUMO

Parkinson's disease is a common progressive neurodegenerative condition, characterized by the deposition of amyloid fibrils as Lewy bodies in the substantia nigra of affected individuals. These insoluble aggregates predominantly consist of the protein α-synuclein. There is increasing evidence suggesting that the aggregation of α-synuclein is influenced by lipid membranes and, vice versa, the membrane integrity is severely affected by the presence of bound aggregates. Here, using the surface-sensitive imaging technique supercritical angle fluorescence microscopy and Förster resonance energy transfer, we report the direct observation of α-synuclein aggregation on supported lipid bilayers. Both the wild-type and the two mutant forms of α-synuclein studied, namely, the familiar variant A53T and the designed highly toxic variant E57K, were found to follow the same mechanism of polymerization and membrane damage. This mechanism involved the extraction of lipids from the bilayer and their clustering around growing α-synuclein aggregates. Despite all three isoforms following the same pathway, the extent of aggregation and their effect on the bilayers was seen to be variant and concentration dependent. Both A53T and E57K formed cross-ß-sheet aggregates and damaged the membrane at submicromolar concentrations. The wild-type also formed aggregates in this range; however, the extent of membrane disruption was greatly reduced. The process of membrane damage could resemble part of the yet poorly understood cellular toxicity phenomenon in vivo.


Assuntos
Bicamadas Lipídicas/química , alfa-Sinucleína/química , Transferência Ressonante de Energia de Fluorescência , Bicamadas Lipídicas/metabolismo , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Mutação , Polimerização , Estrutura Secundária de Proteína , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
12.
Cell Stem Cell ; 28(8): 1337-1338, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34358436

RESUMO

In this issue of Cell Stem Cell, Lõhmussaar et al. (2021) describe a versatile platform for generating long-term patient-derived organoids from hysterectomies and Pap brush cells. They establish malignant and benign cervix tissue organoids from both endo- and ectocervix that have applications ranging from precision medicine to infection modeling.


Assuntos
Colo do Útero , Organoides , Feminino , Humanos , Medicina de Precisão
13.
STAR Protoc ; 1(2)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-33043307

RESUMO

Tumor organoids are promising tools for cancer biology investigations and preclinical drug screenings because they are often representative of the histology and drug responses of patients. Here, we introduce a facile protocol to overcome technical limitations by generating patient-derived tumor organoids using a simplified ring-like geometry. This facilitates media exchange and drug treatment for histopathology characterization and automated high-throughput drug screenings. For complete details on the use and execution of this protocol, please refer to Phan et al. (2019).


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Histocitoquímica/métodos , Neoplasias , Organoides , Células Tumorais Cultivadas , Humanos , Neoplasias/química , Neoplasias/patologia , Organoides/citologia , Organoides/patologia , Células Tumorais Cultivadas/citologia , Células Tumorais Cultivadas/patologia
14.
Cell Stem Cell ; 27(4): 508-510, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007233

RESUMO

COVID-19 has unfortunately halted lab work, conferences, and in-person networking, which is especially detrimental to researchers just starting their labs. Through social media and our reviewer networks, we met some early-career stem cell investigators impacted by the closures. Here, they introduce themselves and their research to our readers.

15.
Chembiochem ; 10(10): 1657-65, 2009 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-19504509

RESUMO

The three-dimensional structure of amyloid fibrils of the prion-forming part of the HET-s protein [HET-s(218-289)], as determined by solid-state NMR, contains rigid and remarkably well-ordered parts, as witnessed by the narrow solid-state NMR line widths for this system. On the other hand, high-resolution magic-angle-spinning (HRMAS) NMR results have shown that HET-s(218-289) amyloid fibrils contain highly flexible parts as well. Here, we further explore this unexpected behaviour using solid-state NMR and molecular dynamics (MD). The NMR data provide new information on order and dynamics in the rigid and flexible parts of HET-s(218-289), respectively. The MD study addresses whether or not small multimers, in an amyloid conformation, are stable on the 10 ns timescale of the MD run and provides insight into the dynamic parameters on the nanosecond timescale. The atom-positional, root-mean-squared fluctuations (RMSFs) and order parameters S(2) obtained are in agreement with the NMR data. A flexible loop and the N terminus exhibit dynamics on the ps-ns timescale, whereas the hydrophobic core of HET-s(218-289) is rigid. The high degree of order in the core region of HET-s(218-289) amyloids, as observed in the MD simulations, is in agreement with the narrow, solid-state, NMR lines. Finally, we employed MD to predict the behaviour of the salt-bridge network in HET-s(218-289), which cannot be obtained easily by experiment. Simulations at different temperatures indicated that the network is highly dynamic and that it contributes to the thermostability of the HET-s(218-289) amyloids.


Assuntos
Amiloide/química , Proteínas Fúngicas/química , Peptídeos/química , Príons/química , Simulação por Computador , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes/química
16.
Commun Biol ; 2: 78, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820473

RESUMO

Tumor organoids maintain cell-cell interactions, heterogeneity, microenvironment, and drug response of the sample they originate from. Thus, there is increasing interest in developing tumor organoid models for drug development and personalized medicine applications. Although organoids are in principle amenable to high-throughput screenings, progress has been hampered by technical constraints and extensive manipulations required by current methods. Here we introduce a miniaturized method that uses a simplified geometry by seeding cells around the rim of the wells (mini-rings). This allows high-throughput screenings in a format compatible with automation as shown using four patient-derived tumor organoids established from two ovarian and one peritoneal high-grade serous carcinomas and one carcinosarcoma of the ovary. Using our automated screening platform, we identified personalized responses by measuring viability, number, and size of organoids after exposure to 240 kinase inhibitors. Results are available within a week from surgery, a timeline compatible with therapeutic decision-making.


Assuntos
Neoplasias/tratamento farmacológico , Organoides/efeitos dos fármacos , Medicina de Precisão/métodos , Inibidores de Proteínas Quinases/uso terapêutico , Técnicas de Cultura de Tecidos/métodos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neoplasias/patologia , Organoides/patologia , Reprodutibilidade dos Testes , Microambiente Tumoral/efeitos dos fármacos
17.
Biochemistry ; 47(41): 10841-51, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18803399

RESUMO

Transition metals have been frequently recognized as risk factors in neurodegenerative disorders, and brain lesions associated with Alzheimer's disease are rich in Fe(III), Zn(II), and Cu(II). By using different biophysical techniques (nuclear magnetic resonance, circular dichroism, light scattering, and microcalorimetry), we have structurally characterized the binding of Cu(II) to a 198 amino acid fragment of the protein Tau that can mimic both the aggregation behavior and microtubule binding properties of the full-length protein. We demonstrate that Tau can specifically bind one Cu(II) ion per monomer with a dissociation constant in the micromolar range, an affinity comparable to the binding of Cu(II) to other proteins involved in neurodegenerative diseases. NMR spectroscopy showed that two short stretches of residues, (287)VQSKCGS (293) and (310)YKPVDLSKVTSKCGS (324), are primarily involved in copper binding, in agreement with mutational analysis. According to circular dichroism and NMR spectroscopy, Tau remains largely disordered upon binding to Cu(II), although a limited amount of aggregation is induced.


Assuntos
Cobre/metabolismo , Proteínas tau/metabolismo , Sequência de Aminoácidos , Calorimetria , Cromatografia em Gel , Humanos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Proteínas tau/química
18.
Elife ; 72018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29889024

RESUMO

Early-career researchers can learn about peer review by discussing preprints at journal clubs and sending feedback to the authors.


Assuntos
Revisão por Pares/métodos , Revisão por Pares/normas , Publicações Periódicas como Assunto , Pré-Publicações como Assunto , Humanos , Disseminação de Informação/métodos , Reprodutibilidade dos Testes
20.
Cancer Cell ; 29(1): 90-103, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26748848

RESUMO

Half of all human cancers lose p53 function by missense mutations, with an unknown fraction of these containing p53 in a self-aggregated amyloid-like state. Here we show that a cell-penetrating peptide, ReACp53, designed to inhibit p53 amyloid formation, rescues p53 function in cancer cell lines and in organoids derived from high-grade serous ovarian carcinomas (HGSOC), an aggressive cancer characterized by ubiquitous p53 mutations. Rescued p53 behaves similarly to its wild-type counterpart in regulating target genes, reducing cell proliferation and increasing cell death. Intraperitoneal administration decreases tumor proliferation and shrinks xenografts in vivo. Our data show the effectiveness of targeting a specific aggregation defect of p53 and its potential applicability to HGSOCs.


Assuntos
Proliferação de Células/genética , Neoplasias Ovarianas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Camundongos Transgênicos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa