Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Malar J ; 20(1): 67, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531024

RESUMO

BACKGROUND: Malaria persists as a huge medical and economic burden. Although the number of cases and death rates have reduced in recent years, novel interventions are a necessity if such gains are to be maintained. Alternative methods to target mosquito vector populations that involve the release of large numbers genetically modified mosquitoes are in development. However, their successful introduction will require innovative strategies to bulk-up mosquito numbers and improve mass rearing protocols for Anopheles mosquitoes. METHODS: The relationship between mosquito aquatic stage development and temperature was exploited so that multiple cohorts of mosquitoes, from separate egg batches, could be synchronized to 'bulk-up' the number of mosquitoes released. First instar larvae were separated into two cohorts: the first, maintained under standard insectary conditions at 27oC, the second subjected to an initial 5-day cooling period at 19oC. RESULTS: Cooling of 1st instars slowed the mean emergence times of Anopheles coluzzii and Anopheles gambiae by 2.4 and 3.5 days, respectively, compared to their 27oC counterparts. Pupation and emergence rates were good (> 85 %) in all conditions. Temperature adjustment had no effect on mosquito sex ratio and adult fitness parameters such as body size and mating success. CONCLUSIONS: Bulk-up larval synchronization is a simple method allowing more operational flexibility in mosquito production towards mark-release-recapture studies and mass release interventions.


Assuntos
Anopheles/fisiologia , Temperatura Baixa , Comportamento Sexual Animal , Animais , Anopheles/crescimento & desenvolvimento , Tamanho Corporal , Feminino , Larva/crescimento & desenvolvimento
3.
Malar J ; 17(1): 123, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29566682

RESUMO

BACKGROUND: The use of insecticides, through indoor residual spraying and long-lasting insecticide-treated nets (LLINs), is essential to control malaria vectors. However, the sustainability of these tools is challenged by the spread of insecticide resistance in Anopheles mosquitoes. This study was conducted to assess the susceptibility to insecticides and to determine the resistance mechanisms in malaria vectors in Dielmo, a rural area of western Senegal where LLINs were introduced a decade ago. METHODS: CDC bottle bioassays were used to determine the susceptibility of 2-5 day-old unfed Anopheles gambiae s.l. females to alphacypermethrin (12.5 µg/bottle), deltamethrin (12.5 µg/bottle), etofenprox (12.5 µg/bottle), lambdacyhalothrin (12.5 µg/bottle), permethrin (21.5 µg/bottle), DDT (100 µg/bottle), bendiocarb (12.5 µg/bottle), pirimiphos-methyl (20 µg/bottle) and fenitrothion (50 µg/bottle). The involvement of glutathione-S-transferases (GSTs) in insecticide resistance was assessed using a synergist, etacrynic acid (EA, 80 µg/bottle). Polymerase chain reaction (PCR) was used to investigate the presence of 'knock-down resistance (kdr)' mutation and to identify sibling species within the An. gambiae complex. RESULTS: CDC bottle bioassays showed that mosquitoes were fully susceptible to lambdacyhalothrin, bendiocarb and fenitrothion. Overall, mortality rates of 97, 94.6, 93.5, 92.1, and 90.1% were, respectively, observed for permethrin, deltamethrin, pirimiphos-methyl, etofenprox and alphacypermethrin. Resistance to DDT was observed, with a mortality rate of 62%. The use of EA significantly improved the susceptibility of An. gambiae s.l. to DDT by inhibiting GSTs (p = 0.03). PCR revealed that Anopheles arabiensis was the predominant species (91.3%; IC 95 86.6-94%) within An. gambiae complex from Dielmo, followed by Anopheles coluzzii (5.4%; IC 95 2.7-8.1%) and Anopheles gambiae s.s. (3.3%; IC 95 0.6-5.9%). Both 1014F and 1014S alleles were found in An. arabiensis population with frequencies of 0.08 and 0.361, respectively, and 0.233 and 0.133, respectively in An. coluzzii. In An. gambiae s.s. population, only kdr L1014F mutation was detected, with a frequency of 0.167. It was observed that some individual mosquitoes carried both alleles, with 19 specimens recorded for An. arabiensis and 2 for An. coluzzii. The presence of L1014F and L1014S alleles were not associated with resistance to pyrethroids and DDT in An. arabiensis. CONCLUSIONS: The co-occurrence of 1014F and 1014S alleles and the probable involvement of GSTs enzymes in insecticide resistance in An. gambiae s.l. should prompt the local vector programme to implement non-pyrethroid/DDT insecticides alternatives.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Animais , Mosquiteiros Tratados com Inseticida , Mutação , Senegal , Fatores de Tempo
4.
Malar J ; 16(1): 337, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28810861

RESUMO

BACKGROUND: Mosquitoes belonging to the Anopheles gambiae complex are the main vectors of malaria in sub-Saharan Africa. Among these, An. gambiae, Anopheles coluzzii and Anopheles arabiensis are the most efficient vectors and are largely distributed in sympatric locations. However, these species present ecological and behavioural differences that impact their vectorial capacity and complicate vector-control efforts, mainly based on long-lasting insecticidal bed nets (LLINs) and indoor residual spraying (IRS). In this study, the genetic structure of these three species in a Senegalese village (Dielmo) was investigated using microsatellite data in samples collected in 2006 before implementation of LLINs, in 2008, when they were introduced, and in 2010, 2 years after the use of LLINs. RESULTS: In this study 611 individuals were included, namely 136 An. coluzzii, 101 An. gambiae, 6 An. coluzzii/An. gambiae hybrids and 368 An. arabiensis. According to the species, the effect of the implementation of LLINs in Dielmo is differentiated. Populations of the sister species An. coluzzii and An. gambiae regularly experienced bottleneck events, but without significant inbreeding. The Fst values suggested in 2006 a breakdown of assortative mating resulting in hybrids, but the introduction of LLINs was followed by a decrease in the number of hybrids. This suggests a decrease in mating success of hybrids, ecological maladaptation, or a lesser probability of mating between species due to a decrease in An. coluzzii population size. By contrast, the introduction of LLINs has favoured the sibling species An. arabiensis. In this study, some spatial and temporal structuration between An. arabiensis populations were detected, especially in 2008, and the higher genetic diversity observed could result from a diversifying selection. CONCLUSIONS: This work demonstrates the complexity of the malaria context and shows the need to study the genetic structure of Anopheles populations to evaluate the effectiveness of vector-control tools and successful management of malaria vector control.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/genética , Variação Genética/efeitos dos fármacos , Mosquiteiros Tratados com Inseticida , Inseticidas/farmacologia , Repetições de Microssatélites/efeitos dos fármacos , Controle de Mosquitos , Animais , Fluxo Gênico/efeitos dos fármacos , Hibridização Genética/efeitos dos fármacos , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Senegal , Especificidade da Espécie
5.
J Vector Borne Dis ; 54(1): 4-15, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28352041

RESUMO

Over the past decade, global malaria-related mortality has declined dramatically because of combined international actions that have defined and prioritized national and regional efforts to reduce the incidence of malaria, with the ultimate goal of eradication. Vector control strategies using insecticide-treated nets (ITNs) and indoor residual spraying (IRS) in African countries have contributed significantly to the declining incidence of malaria. However, the effectiveness of malaria control is threatened by increasing insecticide resistance and behavioral changes in Anopheles vectors. Thus, there is an urgent need to ensure that future programmes are designed to address these threats and protect the progress made so far in controlling malaria. This review summarizes the current malaria vector control tools and discusses about the critical threats to vector control programme and vector management.


Assuntos
Anopheles/fisiologia , Malária/prevenção & controle , Malária/transmissão , Controle de Mosquitos/métodos , Adaptação Biológica , Adaptação Fisiológica , África Subsaariana/epidemiologia , Animais , Anopheles/efeitos dos fármacos , Comportamento Animal , Humanos , Resistência a Inseticidas
6.
Malar J ; 13: 125, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24678587

RESUMO

BACKGROUND: Malaria control is mainly based on indoor residual spraying and insecticide-treated bed nets. The efficacy of these tools depends on the behaviour of mosquitoes, which varies by species. With resistance to insecticides, mosquitoes adapt their behaviour to ensure their survival and reproduction. The aim of this study was to assess the biting behaviour of Anopheles funestus after the implementation of long-lasting insecticidal nets (LLINs). METHODS: A study was conducted in Dielmo, a rural Senegalese village, after a second massive deployment of LLINs in July 2011. Adult mosquitoes were collected by human landing catch and by pyrethrum spray catch monthly between July 2011 and April 2013. Anophelines were identified by stereomicroscope and sub-species by PCR. The presence of circumsporozoite protein of Plasmodium falciparum and the blood meal origin were detected by ELISA. RESULTS: Anopheles funestus showed a behavioural change in biting activity after introduction of LLINs, remaining anthropophilic and endophilic, while adopting diurnal feeding, essentially on humans. Six times more An. funestus were captured in broad daylight than at night. Only one infected mosquito was found during day capture. The mean of day CSP rate was 1.28% while no positive An. funestus was found in night captures. CONCLUSION: Mosquito behaviour is an essential component for assessing vectorial capacity to transmit malaria. The emergence of new behavioural patterns of mosquitoes may significantly increase the risk for malaria transmission and represents a new challenge for malaria control. Additional vector control strategies are, therefore, necessary.


Assuntos
Anopheles/fisiologia , Mordeduras e Picadas de Insetos/epidemiologia , Insetos Vetores/fisiologia , Mosquiteiros Tratados com Inseticida , Malária/prevenção & controle , Controle de Mosquitos/métodos , Animais , Ritmo Circadiano , Feminino , Humanos , Mordeduras e Picadas de Insetos/etiologia , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Inseticidas/farmacologia , Malária/transmissão , Dinâmica Populacional , Estações do Ano , Senegal/epidemiologia
7.
Sci Rep ; 12(1): 2206, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177630

RESUMO

Vector-borne diseases are worldwide public health issues. Despite research focused on vectorial capacity determinants in pathogen transmitting mosquitoes, their behavioural plasticity remains poorly understood. Memory and associative learning have been linked to behavioural changes in several insect species, but their relevance in behavioural responses to pesticide vector control has been largely overlooked. In this study, female Aedes aegypti and Culex quinquefasciastus were exposed to sub-lethal doses of 5 pesticide compounds using modified World Health Organization (WHO) tube bioassays. Conditioned females, subsequently exposed to the same pesticides in WHO tunnel assays, exhibited behavioural avoidance by forgoing blood-feeding to ensure survival. Standardized resting site choice tests showed that pre-exposed females avoided the pesticides smell and choose to rest in a pesticide-free compartment. These results showed that, following a single exposure, mosquitoes can associate the olfactory stimulus of pesticides with their detrimental effects and subsequently avoid pesticide contact. Findings highlight the importance of mosquito cognition as determinants of pesticide resistance in mosquito populations targeted by chemical control.


Assuntos
Anopheles/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Aedes/efeitos dos fármacos , Aedes/patogenicidade , Animais , Anopheles/fisiologia , Bioensaio , Culex/efeitos dos fármacos , Culex/patogenicidade , Culicidae/efeitos dos fármacos , Culicidae/patogenicidade , Humanos , Inseticidas/farmacologia , Mosquitos Vetores/genética , Mosquitos Vetores/fisiologia , Organização Mundial da Saúde
8.
Parasit Vectors ; 13(1): 295, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522290

RESUMO

Since the implementation of Roll Back Malaria, the widespread use of insecticide-treated nets (ITNs) and indoor residual spraying (IRS) is thought to have played a major part in the decrease in mortality and morbidity achieved in malaria-endemic regions. In the past decade, resistance to major classes of insecticides recommended for public health has spread across many malaria vector populations. Increasingly, malaria vectors are also showing changes in vector behaviour in response to current indoor chemical vector control interventions. Changes in the time of biting and proportion of indoor biting of major vectors, as well as changes in the species composition of mosquito communities threaten the progress made to control malaria transmission. Outdoor biting mosquito populations contribute to malaria transmission in many parts of sub-Saharan Africa and pose new challenges as they cannot be reliably monitored or controlled using conventional tools. Here, we review existing and novel approaches that may be used to target outdoor communities of malaria vectors. We conclude that scalable tools designed specifically for the control and monitoring of outdoor biting and resting malaria vectors with increasingly complex and dynamic responses to intensifying malaria control interventions are urgently needed. These are crucial for integrated vector management programmes designed to challenge current and future vector populations.


Assuntos
Anopheles/fisiologia , Mordeduras e Picadas de Insetos/prevenção & controle , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores/parasitologia , Animais , Anopheles/parasitologia , Humanos , Mosquiteiros Tratados com Inseticida , Inseticidas
9.
Dev Comp Immunol ; 86: 214-218, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29746980

RESUMO

While genetic evidence points towards an absence of Toll-Like Receptors (TLRs) in Platyhelminthes, the Toll/IL-1 Receptor (TIR)-domains that drive the assembly of signalling complexes downstream TLR are present in these organisms. Here, we undertook the characterisation of the repertoire of TIR-domain containing proteins in Schmidtea mediterranea in order to gain valuable information on TLR evolution in metazoan. We report the presence of twenty proteins containing between one and two TIR domains. In addition, our phylogenetic-based reconstruction approach identified Smed-SARM and Smed-MyD88 as conserved TLR adaptors.


Assuntos
Platelmintos/genética , Domínios Proteicos/genética , Receptores Toll-Like/genética , Animais , Simulação por Computador , Filogenia
10.
Am J Trop Med Hyg ; 98(5): 1343-1352, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29557325

RESUMO

The implementation of long-lasting insecticidal-treated bed nets (LLINs) has contributed to halving the mortality rate due to malaria since 2000 in sub-Saharan Africa. These tools are highly effective against indoor-feeding malaria vectors. Thus, to achieve the World Health Assembly's new target to reduce the burden of malaria over the next 15 years by 90%, it is necessary to understand how the spatiotemporal dynamics of malaria vectors and human exposure to bites is modified in the context of scaling up global efforts to control malaria transmission. This study was conducted in Dielmo, a Senegalese village, after the introduction of LLINs and two rounds of LLINs renewals. Data analysis showed that implementation of LLINs correlated with a significant decrease in the biting densities of the main malaria vectors, Anopheles gambiae s.l. and Anopheles funestus, reducing malaria transmission. Other environment factors likely contributed to the decrease in An. funestus, but this trend was enhanced with the introduction of LLINs. The bulk of bites occurred during sleeping hours, but the residual vector populations of An. gambiae s.l. and An. funestus had an increased propensity to bite outdoors, so a risk of infectious bites remained for LLINs users. These results highlight the need to increase the level and correct use of LLINs and to combine this intervention with complementary control measures against residual exposure, such as spatial repellents and larval source management, to achieve the goal of eliminating malaria transmission.


Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Animais , Feminino , Humanos , Mordeduras e Picadas de Insetos/prevenção & controle , Malária/epidemiologia , Senegal/epidemiologia
11.
PLoS One ; 8(8): e72380, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977292

RESUMO

BACKGROUND: The identification of mosquito vectors is typically based on morphological characteristics using morphological keys of determination, which requires entomological expertise and training. The use of protein profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), which is increasingly being used for the routine identification of bacteria, has recently emerged for arthropod identification. METHODS: To investigate the usefulness of MALDI-TOF-MS as a mosquito identification tool, we tested protein extracts made from mosquito legs to create a database of reference spectra. The database included a total of 129 laboratory-reared and field-caught mosquito specimens consisting of 20 species, including 4 Aedes spp., 9 Anopheles spp., 4 Culex spp., Lutzia tigripes, Orthopodomyia reunionensis and Mansonia uniformis. For the validation study, blind tests were performed with 76 specimens consisting of 1 to 4 individuals per species. A cluster analysis was carried out using the MALDI-Biotyper and some spectra from all mosquito species tested. RESULTS: Biomarker mass sets containing 22 and 43 masses have been detected from 100 specimens of the Anopheles, Aedes and Culex species. By carrying out 3 blind tests, we achieved the identification of mosquito vectors at the species level, including the differentiation of An. gambiae complex, which is possible using MALDI-TOF-MS with 1.8 as the cut-off identification score. A cluster analysis performed with all available mosquito species showed that MALDI-Biotyper can distinguish between specimens at the subspecies level, as demonstrated for An gambiae M and S, but this method cannot yet be considered a reliable tool for the phylogenetic study of mosquito species. CONCLUSIONS: We confirmed that even without any specific expertise, MALDI-TOF-MS profiling of mosquito leg protein extracts can be used for the rapid identification of mosquito vectors. Therefore, MALDI-TOF-MS is an alternative, efficient and inexpensive tool that can accurately identify mosquitoes collected in the field during entomological surveys.


Assuntos
Culicidae/metabolismo , Vetores de Doenças , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Biomarcadores/metabolismo , Análise por Conglomerados , Bases de Dados de Proteínas , Especificidade da Espécie
12.
PLoS One ; 7(2): e31943, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22384107

RESUMO

INTRODUCTION: The aim of this study was to evaluate the susceptibility to insecticides of An. gambiae mosquitoes sampled in Dielmo (Senegal), in 2010, 2 years after the implementation of Long Lasting Insecticide-treated Nets (LLINs) and to report the evolution of kdr mutation frequency from 2006 to 2010. METHODS: WHO bioassay susceptibility tests to 6 insecticides were performed on adults F0, issuing from immature stages of An. gambiae s.l., sampled in August 2010. Species and molecular forms as well as the presence of L1014F and L1014S kdr mutations were assessed by PCR. Longitudinal study of kdr mutations was performed on adult mosquitoes sampled monthly by night landing catches from 2006 to 2010. FINDINGS: No specimen studied presented the L1014S mutation. During the longitudinal study, L1014F allelic frequency rose from 2.4% in year before the implementation of LLINs to 4.6% 0-12 months after and 18.7% 13-30 months after. In 2010, An. gambiae were resistant to DDT, Lambda-cyhalothrin, Deltamethrin and Permethrin (mortality rates ranging from 46 to 63%) but highly susceptible to Fenitrothion and Bendiocarb (100% mortality). There was significantly more RR genotype among An. gambiae surviving exposure to DDT or Pyrethroids. An. arabiensis represented 3.7% of the sampled mosquitoes (11/300) with no kdr resistance allele detected. An. gambiae molecular form M represented 29.7% of the mosquitoes with, among them, kdr genotypes SR (18%) and SS (82%). An. gambiae molecular form S represented 66% of the population with, among them, kdr genotype SS (33.3%), SR (55.6%) and RR (11.1%). Only 2 MS hybrid mosquitoes were sampled and presented SS kdr genotype. CONCLUSION: Biological evidence of resistance to DDT and pyrethroids was detected among An. gambiae mosquitoes in Dielmo (Senegal) within 24 months of community use of LLINs. Molecular identification of L1014F mutation indicated that target site resistance increased after the implementation of LLINs.


Assuntos
Anopheles/fisiologia , DDT/farmacologia , Resistência a Inseticidas , Mutação , Piretrinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Alelos , Animais , Bioensaio , Culicidae , Análise Mutacional de DNA , Genótipo , Inseticidas , Controle de Mosquitos , Mosquiteiros , Taxa de Mutação , Senegal
13.
Parasit Vectors ; 5: 21, 2012 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-22269038

RESUMO

BACKGROUND: During the last decades two dams were constructed along the Senegal River. These intensified the practice of agriculture along the river valley basin. We conducted a study to assess malaria vector diversity, dynamics and malaria transmission in the area. METHODS: A cross-sectional entomological study was performed in September 2008 in 20 villages of the middle Senegal River valley to evaluate the variations of Anopheles density according to local environment. A longitudinal study was performed, from October 2008 to January 2010, in 5 selected villages, to study seasonal variations of malaria transmission. RESULTS: Among malaria vectors, 72.34% of specimens collected were An. arabiensis, 5.28% An. gambiae of the S molecular form, 3.26% M form, 12.90% An. pharoensis, 4.70% An. ziemanni, 1.48% An. funestus and 0.04% An. wellcomei. Anopheles density varied according to village location. It ranged from 0 to 21.4 Anopheles/room/day and was significantly correlated with the distance to the nearest ditch water but not to the river.Seasonal variations of Anopheles density and variety were observed with higher human biting rates during the rainy season (8.28 and 7.55 Anopheles bite/man/night in October 2008 and 2009 respectively). Transmission was low and limited to the rainy season (0.05 and 0.06 infected bite/man/night in October 2008 and 2009 respectively). During the rainy season, the endophagous rate was lower, the anthropophagic rate higher and L1014F kdr frequency higher. CONCLUSIONS: Malaria vectors are present at low-moderate density in the middle Senegal River basin with An. arabiensis as the predominant species. Other potential vectors are An. gambiae M and S form and An. funestus. Nonetheless, malaria transmission was extremely low and seasonal.


Assuntos
Anopheles/classificação , Insetos Vetores/classificação , Malária Falciparum/transmissão , Plasmodium falciparum/fisiologia , Animais , Anopheles/parasitologia , Estudos Transversais , Feminino , Genótipo , Geografia , Humanos , Mordeduras e Picadas de Insetos/complicações , Mordeduras e Picadas de Insetos/epidemiologia , Insetos Vetores/parasitologia , Estudos Longitudinais , Malária Falciparum/parasitologia , Densidade Demográfica , Chuva , Rios , Estações do Ano , Senegal/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa