Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(25): 255701, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416391

RESUMO

We report on the evaporation of hexane from porous alumina and silicon membranes. These membranes contain billions of independent nanopores tailored to an ink-bottle shape, where a cavity several tens of nanometers in diameter is separated from the bulk vapor by a constriction. For alumina membranes with narrow enough constrictions, we demonstrate that cavity evaporation proceeds by cavitation. Measurements of the pressure dependence of the cavitation rate follow the predictions of the bulk, homogeneous, classical nucleation theory, definitively establishing the relevance of homogeneous cavitation as an evaporation mechanism in mesoporous materials. Our results imply that porous alumina membranes are a promising new system to study liquids in a deeply metastable state.

2.
Phys Rev Lett ; 124(1): 015301, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31976679

RESUMO

Superfluid ^{3}He under nanoscale confinement has generated significant interest due to the rich spectrum of phases with complex order parameters that may be stabilized. Experiments have uncovered a variety of interesting phenomena, but a complete picture of superfluid ^{3}He under confinement has remained elusive. Here, we present phase diagrams of superfluid ^{3}He under varying degrees of uniaxial confinement, over a wide range of pressures, which elucidate the progressive stability of both the A phase, as well as a growing region of stable pair density wave state.

4.
Rev Sci Instrum ; 89(11): 114704, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30501360

RESUMO

A wide variety of applications of microwave cavities, such as measurement and control of superconducting qubits, magnonic resonators, and phase noise filters, would be well served by having a highly tunable microwave resonance. Often this tunability is desired in situ at low temperatures, where one can take advantage of superconducting cavities. To date, such cryogenic tuning while maintaining a high quality factor has been limited to ∼500 MHz. Here we demonstrate a three-dimensional superconducting microwave cavity that shares one wall with a pressurized volume of helium. Upon pressurization of the helium chamber, the microwave cavity is deformed, which results in in situ tuning of its resonant frequency by more than 5 GHz, greater than 60% of the original 8 GHz resonant frequency. The quality factor of the cavity remains approximately constant at ≈7 × 103 over the entire range of tuning. As a demonstration of its usefulness, we implement a tunable cryogenic phase noise filter, which reduces the phase noise of our source by approximately 10 dB above 400 kHz.

5.
Nat Commun ; 7: 13165, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27762273

RESUMO

Reducing the moment of inertia improves the sensitivity of a mechanically based torque sensor, the parallel of reducing the mass of a force sensor, yet the correspondingly small displacements can be difficult to measure. To resolve this, we incorporate cavity optomechanics, which involves co-localizing an optical and mechanical resonance. With the resulting enhanced readout, cavity-optomechanical torque sensors are now limited only by thermal noise. Further progress requires thermalizing such sensors to low temperatures, where sensitivity limitations are instead imposed by quantum noise. Here, by cooling a cavity-optomechanical torque sensor to 25 mK, we demonstrate a torque sensitivity of 2.9 yNm/. At just over a factor of ten above its quantum-limited sensitivity, such cryogenic optomechanical torque sensors will enable both static and dynamic measurements of integrated samples at the level of a few hundred spins.

6.
J Low Temp Phys ; 178(3-4): 149-161, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26069349

RESUMO

The giant plasticity of [Formula: see text]He crystals has been explained as a consequence of the large mobility of their dislocations. Thus, the mechanical properties of dislocation free crystals should be quite different from those of usual ones. In 1996-1998, Ruutu et al. published crystal growth studies showing that, in their helium 4 crystals, the density of screw dislocations along the c-axis was less than 100 per cm[Formula: see text], sometimes zero. We have grown helium 4 crystals using similar growth speeds and temperatures, and extracted their dislocation density from their mechanical properties. We found dislocation densities that are in the range of 10[Formula: see text]-10[Formula: see text] per cm[Formula: see text], that is several orders of magnitude larger than Ruutu et al. Our tentative interpretation of this apparent contradiction is that the two types of measurements are somewhat indirect and concern different types of dislocations. As for the dislocation nucleation mechanism, it remains to be understood.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa