Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Opt ; 54(4): 890-4, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25967801

RESUMO

A phase hologram was machined on an optical fiber tip using a focused ion beam (FIB) system so that a ring-shaped beam emerges from the fiber tip. The fiber used for this work was a commercial single-mode optical fiber patch cable for a design wavelength of 633 nm with a germanosilicate core. The ring-shaped beam was chosen to ensure a simple geometry in the required phase hologram, though the Gerchberg-Saxton algorithm can be used to calculate a hologram for an arbitrary beam shape. The FIB machining took approximately 45 min at 30 kV and 200 pA. The radius of the resulting ring beam was 0.083 m at 1 m standoff, as compared to 0.1 m as was initially desired. Results suggest that this imaging technique may provide a basis for a beam-shaping method with several advantages over the current commercial solutions, having permanent alignment, compactness, and mechanical robustness. However, it would appear that minimizing the speckle pattern will remain a critical challenge for this technique to become widely implemented.

2.
Nanoscale ; 11(39): 18483-18495, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31577319

RESUMO

Floating catalyst chemical vapor deposition (FC-CVD) methods offer a highly scalable strategy for single-step synthesis and assembly of carbon nanotubes (CNTs) into macroscopic textiles. However, the non-uniform axial temperature profile of a typical reactor, and differing precursor breakdown temperatures, result in a broad distribution of catalyst particle sizes. Spun CNT fibres therefore contain nanotubes with varying diameters and wall numbers. Herein, we describe a general FC-CVD approach to obtain relatively large yields of predominantly single-wall CNT fibres, irrespective of the growth promoter (usually a sulfur compound). By increasing carrier gas (hydrogen) flow rate beyond a threshold whilst maintaining a constant C : H2 mole ratio, CNTs with narrower diameters, a high degree of graphitization (G : D ratio ∼100) and a large throughput are produced, provided S : Fe ratio is sufficiently low. Analysis of the intense Raman radial breathing modes and asymmetric G bands, and a shift in the main nanotube population from thermogravimetric data, show that with increasing flow rate, the fibres are enriched with small diameter, metallic CNTs. Transmission electron microscopy corraborates our primary observation from Raman spectroscopy that with high total flow rates, the fibres produced consist of predominantly small diameter SWCNTs.

3.
Sci Rep ; 7(1): 12977, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021547

RESUMO

Floating catalyst chemical vapor deposition uniquely generates aligned carbon nanotube (CNT) textiles with individual CNT lengths magnitudes longer than competing processes, though hindered by impurities and intrinsic/extrinsic defects. We present a photonic-based post-process, particularly suited for these textiles, that selectively removes defective CNTs and other carbons not forming a threshold thermal pathway. In this method, a large diameter laser beam rasters across the surface of a partly aligned CNT textile in air, suspended from its ends. This results in brilliant, localized oxidation, where remaining material is an optically transparent film comprised of few-walled CNTs with profound and unique improvement in microstructure alignment and crystallinity. Raman spectroscopy shows substantial D peak suppression while preserving radial breathing modes. This increases the undoped, specific electrical conductivity at least an order of magnitude to beyond that of single-crystal graphite. Cryogenic conductivity measurements indicate intrinsic transport enhancement, opposed to simply removing nonconductive carbons/residual catalyst.

4.
Sci Rep ; 5: 18151, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26659022

RESUMO

An electromagnetic transmitter typically consists of individual components such as a waveguide, antenna, power supply, and an oscillator. In this communication we circumvent complications associated with connecting these individual components and instead combine them into a non-traditional, photonic enabled, compact transmitter device for tunable, ultrawide band (UWB) radiation. This device is a centimeter scale, continuous, thin film superconducting ring supporting a persistent super-current. An ultrafast laser pulse (required) illuminates the ring (either at a point or uniformly around the ring) and perturbs the super-current by the de-pairing and recombination of Cooper pairs. This generates a microwave pulse where both ring and laser pulse geometry dictates the radiated spectrum's shape. The transmitting device is self contained and completely isolated from conductive components that are observed to interfere with the generated signal. A rich spectrum is observed that extends beyond 30 GHz (equipment limited) and illustrates the complex super-current dynamics bridging optical, THz, and microwave wavelengths.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa