Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 150(3): 470-80, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22863002

RESUMO

Many of the immune and metabolic changes occurring during normal pregnancy also describe metabolic syndrome. Gut microbiota can cause symptoms of metabolic syndrome in nonpregnant hosts. Here, to explore their role in pregnancy, we characterized fecal bacteria of 91 pregnant women of varying prepregnancy BMIs and gestational diabetes status and their infants. Similarities between infant-mother microbiotas increased with children's age, and the infant microbiota was unaffected by mother's health status. Gut microbiota changed dramatically from first (T1) to third (T3) trimesters, with vast expansion of diversity between mothers, an overall increase in Proteobacteria and Actinobacteria, and reduced richness. T3 stool showed strongest signs of inflammation and energy loss; however, microbiome gene repertoires were constant between trimesters. When transferred to germ-free mice, T3 microbiota induced greater adiposity and insulin insensitivity compared to T1. Our findings indicate that host-microbial interactions that impact host metabolism can occur and may be beneficial in pregnancy.


Assuntos
Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Metagenoma , Gravidez , Actinobacteria/isolamento & purificação , Animais , Feminino , Vida Livre de Germes , Humanos , Lactente , Síndrome Metabólica/microbiologia , Camundongos , Proteobactérias/isolamento & purificação
2.
Ecol Lett ; 27(6): e14442, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38844373

RESUMO

Highly diverse and abundant organisms coexist in soils. However, the contribution of biotic interactions between soil organisms to microbial community assembly remains to be explored. Here, we assess the extent to which soil fauna can shape microbial community assembly using an exclusion experiment in a grassland field to sort soil biota based on body size. After 1 year, the exclusion of larger fauna favoured phagotrophic protists, with increases up to 32% in their proportion compared to the no-mesh treatment. In contrast, members of the bacterial community and to a lesser extent of the fungal community were negatively impacted. Shifts in bacterial but not in fungal communities were best explained by the response of the protistan community to exclusion. Our findings provide empirical evidence of top-down control on the soil microbial communities and underline the importance of integrating higher trophic levels for a better understanding of the soil microbiome assembly.


Assuntos
Bactérias , Fungos , Pradaria , Microbiota , Microbiologia do Solo , Fungos/fisiologia , Animais , Eucariotos/fisiologia , Solo/química , Tamanho Corporal
3.
Ecol Lett ; 25(1): 189-201, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34749426

RESUMO

Artificial selection of microbiota opens new avenues for improving plants. However, reported results lack consistency. We hypothesised that the success in artificial selection of microbiota depends on the stabilisation of community structure. In a ten-generation experiment involving 1,800 plants, we selected rhizosphere microbiota of Brachypodium distachyon associated with high or low leaf greenness, a proxy of plant performance. The microbiota structure showed strong fluctuations during an initial transitory phase, with no detectable leaf greenness heritability. After five generations, the microbiota structure stabilised, concomitantly with heritability in leaf greenness. Selection, initially ineffective, did successfully alter the selected property as intended, especially for high selection. We show a remarkable correlation between the variability in plant traits and selected microbiota structures, revealing two distinct sub-communities associated with high or low leaf greenness, whose abundance was significantly steered by directional selection. Understanding microbiota structure stabilisation will improve the reliability of artificial microbiota selection.


Assuntos
Microbiota , Rizosfera , Fenótipo , Reprodutibilidade dos Testes , Microbiologia do Solo
4.
Glob Chang Biol ; 24(1): 360-370, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28752605

RESUMO

Agriculture is the main source of terrestrial N2 O emissions, a potent greenhouse gas and the main cause of ozone depletion. The reduction of N2 O into N2 by microorganisms carrying the nitrous oxide reductase gene (nosZ) is the only known biological process eliminating this greenhouse gas. Recent studies showed that a previously unknown clade of N2 O-reducers (nosZII) was related to the potential capacity of the soil to act as a N2 O sink. However, little is known about how this group responds to different agricultural practices. Here, we investigated how N2 O-producers and N2 O-reducers were affected by agricultural practices across a range of cropping systems in order to evaluate the consequences for N2 O emissions. The abundance of both ammonia-oxidizers and denitrifiers was quantified by real-time qPCR, and the diversity of nosZ clades was determined by 454 pyrosequencing. Denitrification and nitrification potential activities as well as in situ N2 O emissions were also assessed. Overall, greatest differences in microbial activity, diversity, and abundance were observed between sites rather than between agricultural practices at each site. To better understand the contribution of abiotic and biotic factors to the in situ N2 O emissions, we subdivided more than 59,000 field measurements into fractions from low to high rates. We found that the low N2 O emission rates were mainly explained by variation in soil properties (up to 59%), while the high rates were explained by variation in abundance and diversity of microbial communities (up to 68%). Notably, the diversity of the nosZII clade but not of the nosZI clade was important to explain the variation of in situ N2 O emissions. Altogether, these results lay the foundation for a better understanding of the response of N2 O-reducing bacteria to agricultural practices and how it may ultimately affect N2 O emissions.


Assuntos
Bactérias/metabolismo , Óxido Nitroso/química , Microbiologia do Solo , Agricultura , Bactérias/classificação , Desnitrificação , Nitrificação
5.
Proc Natl Acad Sci U S A ; 110(16): 6548-53, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23576752

RESUMO

The rhizosphere is a critical interface supporting the exchange of resources between plants and their associated soil environment. Rhizosphere microbial diversity is influenced by the physical and chemical properties of the rhizosphere, some of which are determined by the genetics of the host plant. However, within a plant species, the impact of genetic variation on the composition of the microbiota is poorly understood. Here, we characterized the rhizosphere bacterial diversity of 27 modern maize inbreds possessing exceptional genetic diversity grown under field conditions. Randomized and replicated plots of the inbreds were planted in five field environments in three states, each with unique soils and management conditions. Using pyrosequencing of bacterial 16S rRNA genes, we observed substantial variation in bacterial richness, diversity, and relative abundances of taxa between bulk soil and the maize rhizosphere, as well as between fields. The rhizospheres from maize inbreds exhibited both a small but significant proportion of heritable variation in total bacterial diversity across fields, and substantially more heritable variation between replicates of the inbreds within each field. The results of this study should facilitate expanded studies to identify robust heritable plant-microbe interactions at the level of individual polymorphisms by genome wide association, so that plant-microbiome interactions can ultimately be incorporated into plant breeding.


Assuntos
Bactérias/genética , Variação Genética , Metagenoma/genética , Rizosfera , Microbiologia do Solo , Zea mays/microbiologia , Sequência de Bases , Análise por Conglomerados , Primers do DNA/genética , Illinois , Missouri , Dados de Sequência Molecular , New York , Filogenia , Filogeografia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/análise
6.
Proc Natl Acad Sci U S A ; 108 Suppl 1: 4592-8, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20937873

RESUMO

Periodontal disease has been associated with atherosclerosis, suggesting that bacteria from the oral cavity may contribute to the development of atherosclerosis and cardiovascular disease. Furthermore, the gut microbiota may affect obesity, which is associated with atherosclerosis. Using qPCR, we show that bacterial DNA was present in the atherosclerotic plaque and that the amount of DNA correlated with the amount of leukocytes in the atherosclerotic plaque. To investigate the microbial composition of atherosclerotic plaques and test the hypothesis that the oral or gut microbiota may contribute to atherosclerosis in humans, we used 454 pyrosequencing of 16S rRNA genes to survey the bacterial diversity of atherosclerotic plaque, oral, and gut samples of 15 patients with atherosclerosis, and oral and gut samples of healthy controls. We identified Chryseomonas in all atherosclerotic plaque samples, and Veillonella and Streptococcus in the majority. Interestingly, the combined abundances of Veillonella and Streptococcus in atherosclerotic plaques correlated with their abundance in the oral cavity. Moreover, several additional bacterial phylotypes were common to the atherosclerotic plaque and oral or gut samples within the same individual. Interestingly, several bacterial taxa in the oral cavity and the gut correlated with plasma cholesterol levels. Taken together, our findings suggest that bacteria from the oral cavity, and perhaps even the gut, may correlate with disease markers of atherosclerosis.


Assuntos
Aterosclerose/microbiologia , Bactérias/genética , Trato Gastrointestinal/microbiologia , Metagenoma/genética , Boca/microbiologia , Placa Aterosclerótica/microbiologia , Idoso , Sequência de Bases , Análise por Conglomerados , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Suécia
7.
Proc Natl Acad Sci U S A ; 108 Suppl 1: 4578-85, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20668239

RESUMO

The colonization process of the infant gut microbiome has been called chaotic, but this view could reflect insufficient documentation of the factors affecting the microbiome. We performed a 2.5-y case study of the assembly of the human infant gut microbiome, to relate life events to microbiome composition and function. Sixty fecal samples were collected from a healthy infant along with a diary of diet and health status. Analysis of >300,000 16S rRNA genes indicated that the phylogenetic diversity of the microbiome increased gradually over time and that changes in community composition conformed to a smooth temporal gradient. In contrast, major taxonomic groups showed abrupt shifts in abundance corresponding to changes in diet or health. Community assembly was nonrandom: we observed discrete steps of bacterial succession punctuated by life events. Furthermore, analysis of ≈ 500,000 DNA metagenomic reads from 12 fecal samples revealed that the earliest microbiome was enriched in genes facilitating lactate utilization, and that functional genes involved in plant polysaccharide metabolism were present before the introduction of solid food, priming the infant gut for an adult diet. However, ingestion of table foods caused a sustained increase in the abundance of Bacteroidetes, elevated fecal short chain fatty acid levels, enrichment of genes associated with carbohydrate utilization, vitamin biosynthesis, and xenobiotic degradation, and a more stable community composition, all of which are characteristic of the adult microbiome. This study revealed that seemingly chaotic shifts in the microbiome are associated with life events; however, additional experiments ought to be conducted to assess how different infants respond to similar life events.


Assuntos
Trato Gastrointestinal/microbiologia , Metagenoma/genética , Fatores Etários , Sequência de Bases , Análise por Conglomerados , Código de Barras de DNA Taxonômico , Primers do DNA/genética , Fezes/microbiologia , Humanos , Lactente , Recém-Nascido , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
8.
Environ Microbiome ; 19(1): 18, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504378

RESUMO

BACKGROUND: Microbial communities are of tremendous importance for ecosystem functioning and yet we know little about the ecological processes driving the assembly of these communities in the environment. Here, we used an unprecedented experimental approach based on the manipulation of physical distance between neighboring cells during soil colonization to determine the role of bacterial interactions in soil community assembly. We hypothesized that experimentally manipulating the physical distance between bacterial cells will modify the interaction strengths leading to differences in microbial community composition, with increasing distance between neighbors favoring poor competitors. RESULTS: We found significant differences in both bacterial community diversity, composition and co-occurrence networks after soil colonization that were related to physical distancing. We show that reducing distances between cells resulted in a loss of bacterial diversity, with at least 41% of the dominant OTUs being significantly affected by physical distancing. Our results suggest that physical distancing may differentially modulate competitiveness between neighboring species depending on the taxa present in the community. The mixing of communities that assembled at high and low cell densities did not reveal any "home field advantage" during coalescence. This confirms that the observed differences in competitiveness were due to biotic rather than abiotic filtering. CONCLUSIONS: Our study demonstrates that the competitiveness of bacteria strongly depends on cell density and community membership, therefore highlighting the fundamental role of microbial interactions in the assembly of soil communities.

9.
J Hazard Mater ; 471: 134454, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38688223

RESUMO

Parallel to the important use of pesticides in conventional agriculture there is a growing interest for green technologies to clear contaminated soil from pesticides and their degradation products. Bioaugmentation i. e. the inoculation of degrading micro-organisms in polluted soil, is a promising method still in needs of further developments. Specifically, improvements in the understanding of how degrading microorganisms must overcome abiotic filters and interact with the autochthonous microbial communities are needed in order to efficiently design bioremediation strategies. Here we designed a protocol aiming at studying the degradation of two herbicides, glyphosate (GLY) and isoproturon (IPU), via experimental modifications of two source bacterial communities. We used statistical methods stemming from genomic prediction to link community composition to herbicides degradation potentials. Our approach proved to be efficient with correlation estimates over 0.8 - between model predictions and measured pesticide degradation values. Multi-degrading bacterial communities were obtained by coalescing bacterial communities with high GLY or IPU degradation ability based on their community-level properties. Finally, we evaluated the efficiency of constructed multi-degrading communities to remove pesticide contamination in a different soil. While results are less clear in the case of GLY, we showed an efficient transfer of degrading capacities towards the receiving soil even at relatively low inoculation levels in the case of IPU. Altogether, we developed an innovative protocol for building multi-degrading simplified bacterial communities with the help of genomic prediction tools and coalescence, and proved their efficiency in a contaminated soil.


Assuntos
Bactérias , Biodegradação Ambiental , Glicina , Glifosato , Herbicidas , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Bactérias/metabolismo , Bactérias/genética , Herbicidas/metabolismo , Herbicidas/química , Compostos de Fenilureia/metabolismo , Resíduos de Praguicidas/metabolismo
10.
Microbiome ; 11(1): 42, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871037

RESUMO

BACKGROUND: Microbes typically live in communities where individuals can interact with each other in numerous ways. However, knowledge on the importance of these interactions is limited and derives mainly from studies using a limited number of species grown in coculture. Here, we manipulated soil microbial communities to assess the contribution of interactions between microorganisms for assembly of the soil microbiome. RESULTS: By combining experimental removal (taxa depletion in the community) and coalescence (mixing of manipulated and control communities) approaches, we demonstrated that interactions between microorganisms can play a key role in determining their fitness during soil recolonization. The coalescence approach not only revealed the importance of density-dependent interactions in microbial community assembly but also allowed to restore partly or fully community diversity and soil functions. Microbial community manipulation resulted in shifts in both inorganic nitrogen pools and soil pH, which were related to the proportion of ammonia-oxidizing bacteria. CONCLUSIONS: Our work provides new insights into the understanding of the importance of microbial interactions in soil. Our top-down approach combining removal and coalescence manipulation also allowed linking community structure and ecosystem functions. Furthermore, these results highlight the potential of manipulating microbial communities for the restoration of soil ecosystems. Video Abstract.


Assuntos
Betaproteobacteria , Microbiota , Humanos , Interações Microbianas , Técnicas de Cocultura , Solo
11.
Evolution ; 76(8): 1883-1895, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35789998

RESUMO

Artificial selection can be conducted at the community level in the laboratory through a differential propagation of the communities according to their level of expression of a targeted function. Working with communities instead of individuals as selection units brings in additional sources of variation in the considered function that can influence the outcome of the artificial selection. In this study, we wanted to assess the effect of manipulating the initial community richness on artificial selection efficiency, defined as the change in the targeted function over time. We applied artificial selection for a high productivity on synthetic bacterial communities varying for their richness (from one to 16 strains). Overall, the selected communities were 16% more productive than the control communities, but a convergence of community composition might have limited the effect of diversity on artificial selection efficiency. Community richness positively influenced community productivity and metabolic capacities and was a strong determinant of the dynamics of community evolution. We propose that applying artificial selection on communities varying for their diversity could be a way to find communities differing for their level of expression of a function but also for their responsiveness to artificial selection, provided that their initial composition is different enough.


Assuntos
Biodiversidade , Ecossistema , Bactérias/genética , Humanos
12.
Ecol Evol ; 12(11): e9494, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36407906

RESUMO

Interspecific interactions play an important role in the establishment of a community phenotype. Furthermore, the evolution of a community can both occur through an independent evolution of the species composing the community and the interactions among them. In this study, we investigated how important the evolution of interspecific interactions was in the evolutionary response of eight two-bacterial species communities regarding productivity. We found evidence for an evolution of the interactions in half of the studied communities, which gave rise to a mean change of 15% in community productivity as compared to what was expected from the individual responses. Even when the interactions did not evolve themselves, they influenced the evolutionary responses of the bacterial strains within the communities, which further affected community response. We found that evolution within a community often promoted the adaptation of the bacterial strains to the abiotic environment, especially for the dominant strain in a community. Overall, this study suggested that the evolution of the interspecific interactions was frequent and that it could increase community response to evolution.

13.
ISME J ; 16(1): 296-306, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34321619

RESUMO

Microbial communities play important roles in all ecosystems and yet a comprehensive understanding of the ecological processes governing the assembly of these communities is missing. To address the role of biotic interactions between microorganisms in assembly and for functioning of the soil microbiota, we used a top-down manipulation approach based on the removal of various populations in a natural soil microbial community. We hypothesized that removal of certain microbial groups will strongly affect the relative fitness of many others, therefore unraveling the contribution of biotic interactions in shaping the soil microbiome. Here we show that 39% of the dominant bacterial taxa across treatments were subjected to competitive interactions during soil recolonization, highlighting the importance of biotic interactions in the assembly of microbial communities in soil. Moreover, our approach allowed the identification of microbial community assembly rule as exemplified by the competitive exclusion between members of Bacillales and Proteobacteriales. Modified biotic interactions resulted in greater changes in activities related to N- than to C-cycling. Our approach can provide a new and promising avenue to study microbial interactions in complex ecosystems as well as the links between microbial community composition and ecosystem function.


Assuntos
Microbiota , Solo , Bactérias/genética , Interações Microbianas , Microbiologia do Solo
14.
Environ Microbiome ; 17(1): 1, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991714

RESUMO

BACKGROUND: Soil microbial communities are major drivers of cycling of soil nutrients that sustain plant growth and productivity. Yet, a holistic understanding of the impact of land-use intensification on the soil microbiome is still poorly understood. Here, we used a field experiment to investigate the long-term consequences of changes in land-use intensity based on cropping frequency (continuous cropping, alternating cropping with a temporary grassland, perennial grassland) on bacterial, protist and fungal communities as well as on their co-occurrence networks. RESULTS: We showed that land use has a major impact on the structure and composition of bacterial, protist and fungal communities. Grassland and arable cropping differed markedly with many taxa differentiating between both land use types. The smallest differences in the microbiome were observed between temporary grassland and continuous cropping, which suggests lasting effects of the cropping system preceding the temporary grasslands. Land-use intensity also affected the bacterial co-occurrence networks with increased complexity in the perennial grassland comparing to the other land-use systems. Similarly, co-occurrence networks within microbial groups showed a higher connectivity in the perennial grasslands. Protists, particularly Rhizaria, dominated in soil microbial associations, as they showed a higher number of connections than bacteria and fungi in all land uses. CONCLUSIONS: Our findings provide evidence of legacy effects of prior land use on the composition of the soil microbiome. Whatever the land use, network analyses highlighted the importance of protists as a key element of the soil microbiome that should be considered in future work. Altogether, this work provides a holistic perspective of the differential responses of various microbial groups and of their associations to agricultural intensification.

15.
Nat Ecol Evol ; 6(8): 1145-1154, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35798840

RESUMO

Phosphorus (P) acquisition is key for plant growth. Arbuscular mycorrhizal fungi (AMF) help plants acquire P from soil. Understanding which factors drive AMF-supported nutrient uptake is essential to develop more sustainable agroecosystems. Here we collected soils from 150 cereal fields and 60 non-cropped grassland sites across a 3,000 km trans-European gradient. In a greenhouse experiment, we tested the ability of AMF in these soils to forage for the radioisotope 33P from a hyphal compartment. AMF communities in grassland soils were much more efficient in acquiring 33P and transferred 64% more 33P to plants compared with AMF in cropland soils. Fungicide application best explained hyphal 33P transfer in cropland soils. The use of fungicides and subsequent decline in AMF richness in croplands reduced 33P uptake by 43%. Our results suggest that land-use intensity and fungicide use are major deterrents to the functioning and natural nutrient uptake capacity of AMF in agroecosystems.


Assuntos
Micorrizas , Praguicidas , Agricultura , Plantas/microbiologia , Solo , Microbiologia do Solo
16.
Appl Environ Microbiol ; 77(2): 452-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21075872

RESUMO

Adaptation is the process whereby a population or species becomes better fitted to its habitat through modifications of various life history traits which can be positively or negatively correlated. The molecular factors underlying these covariations remain to be elucidated. Using Saccharomyces cerevisiae as a model system, we have investigated the effects on life history traits of varying the dosage of genes involved in the transformation of resources into energy. Changing gene dosage for each of three glycolytic enzyme genes (hexokinase 2, phosphoglucose isomerase, and fructose-1,6-bisphosphate aldolase) resulted in variation in enzyme activities, glucose consumption rate, and life history traits (growth rate, carrying capacity, and cell size). However, the range of effects depended on which enzyme was expressed differently. Most interestingly, these changes revealed a genetic trade-off between carrying capacity and cell size, supporting the discovery of two extreme life history strategies already described in yeast populations: the "ants," which have lower glycolytic gene dosage, take up glucose slowly, and have a small cell size but reach a high carrying capacity, and the "grasshoppers," which have higher glycolytic gene dosage, consume glucose more rapidly, and allocate it to a larger cell size but reach a lower carrying capacity. These results demonstrate antagonist pleiotropy for glycolytic genes and show that altered dosage of a single gene drives a switch between two life history strategies in yeast.


Assuntos
Enzimas/genética , Dosagem de Genes , Glicólise , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Metabolismo Energético , Enzimas/metabolismo , Genes Fúngicos , Glucose/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Sci Rep ; 11(1): 9317, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927238

RESUMO

The responses of rhizosphere bacterial communities of Streptomyces (SS14 and IT20 stains) treated-pepper plants following inoculation by Phytophthora capsici (PC) was investigated using Illumina MiSeq sequencing. Distinct modulation of the bacteriome composition was found for PC samples with the highest relative abundance (RA) of Chitinophaga (22 ± 0.03%). The RA of several bacterial operational taxonomic units (OTUs) was affected and caused changes in alpha and beta-diversity measures. In IT20, the RA of Cyanobacteria was enriched compared to SS14 (72%) and control samples (47%). Phylotypes belonging to Devosia, Promicromonospora, Kribbella, Microbacterium, Amylocolatopsis, and Pseudomonas genera in the rhizosphere were positively responding against the pathogen. Our findings show that the phosphate solubilizing strain IT20 has higher microbial community responders than the melanin-producing strain SS14. Also, positive interactions were identified by comparing bacterial community profiles between treatments that might allow designing synthetic bio-inoculants to solve agronomic problems in an eco-friendly way.


Assuntos
Microbiota , Controle Biológico de Vetores , Phytophthora/fisiologia , Rizosfera , Streptomyces/fisiologia , Antibiose , Capsicum , Microbiologia do Solo
18.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414292

RESUMO

We report here the complete genome sequences of four atrazine-degrading bacteria. Their genomes will serve as references for determining the genetic changes that have occurred during an evolution experiment.

19.
J Hazard Mater ; 416: 125740, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33848793

RESUMO

One of the major problems with pesticides is linked to the non-negligible proportion of the sprayed active ingredient that does not reach its intended target and contaminates environmental compartments. Here, we have implemented and provided new insights to the preventive bioremediation process based on the simultaneous application of the pesticide with pesticide-degrading microorganisms to reduce the risk of leaching into the environment. This study pioneers such a practice, in an actual farming context. The 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) and one of its bacterial mineralizing-strains (Cupriavidus necator JMP134) were used as models. The 2,4-D biodegradation was studied in soil microcosms planted with sensitive (mustard) and insensitive (wheat) plants. Simultaneous application of a 2,4-D commercial formulation (DAM®) at agricultural recommended doses with 105 cells.g-1 dw of soil of the JMP134 strain considerably accelerated mineralization of the herbicide since its persistence was reduced threefold for soil supplemented with the mineralizing bacterium without reducing the herbicide efficiency. Furthermore, the inoculation of the Cupriavidus necator strain did not significantly affect the α- and ß-diversity of the bacterial community. By tackling the contamination immediately at source, the preventive bioremediation process proves to be an effective and promising way to reduce environmental contamination by agricultural pesticides.


Assuntos
Herbicidas , Praguicidas , Poluentes do Solo , Ácido 2,4-Diclorofenoxiacético , Agricultura , Biodegradação Ambiental , Microbiologia do Solo
20.
Front Microbiol ; 12: 643087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841365

RESUMO

Chronic and repeated exposure of environmental bacterial communities to anthropogenic antibiotics have recently driven some antibiotic-resistant bacteria to acquire catabolic functions, enabling them to use antibiotics as nutritive sources (antibiotrophy). Antibiotrophy might confer a selective advantage facilitating the implantation and dispersion of antibiotrophs in contaminated environments. A microcosm experiment was conducted to test this hypothesis in an agroecosystem context. The sulfonamide-degrading and resistant bacterium Microbacterium sp. C448 was inoculated in four different soil types with and without added sulfamethazine and/or swine manure. After 1 month of incubation, Microbacterium sp. (and its antibiotrophic gene sadA) was detected only in the sulfamethazine-treated soils, suggesting a low competitiveness of the strain without antibiotic selection pressure. In the absence of manure and despite the presence of Microbacterium sp. C448, only one of the four sulfamethazine-treated soils exhibited mineralization capacities, which were low (inferior to 5.5 ± 0.3%). By contrast, manure addition significantly enhanced sulfamethazine mineralization in all the soil types (at least double, comprised between 5.6 ± 0.7% and 19.5 ± 1.2%). These results, which confirm that the presence of functional genes does not necessarily ensure functionality, suggest that sulfamethazine does not necessarily confer a selective advantage on the degrading strain as a nutritional source. 16S rDNA sequencing analyses strongly suggest that sulfamethazine released trophic niches by biocidal action. Accordingly, manure-originating bacteria and/or Microbacterium sp. C448 could gain access to low-competition or competition-free ecological niches. However, simultaneous inputs of manure and of the strain could induce competition detrimental for Microbacterium sp. C448, forcing it to use sulfamethazine as a nutritional source. Altogether, these results suggest that the antibiotrophic strain studied can modulate its sulfamethazine-degrading function depending on microbial competition and resource accessibility, to become established in an agricultural soil. Most importantly, this work highlights an increased dispersal potential of antibiotrophs in antibiotic-polluted environments, as antibiotics can not only release existing trophic niches but also form new ones.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa