RESUMO
Emissions reduction and greenhouse gas removal from the atmosphere are both necessary to achieve net-zero emissions and limit climate change1. There is thus a need for improved sorbents for the capture of carbon dioxide from the atmosphere, a process known as direct air capture. In particular, low-cost materials that can be regenerated at low temperatures would overcome the limitations of current technologies. In this work, we introduce a new class of designer sorbent materials known as 'charged-sorbents'. These materials are prepared through a battery-like charging process that accumulates ions in the pores of low-cost activated carbons, with the inserted ions then serving as sites for carbon dioxide adsorption. We use our charging process to accumulate reactive hydroxide ions in the pores of a carbon electrode, and find that the resulting sorbent material can rapidly capture carbon dioxide from ambient air by means of (bi)carbonate formation. Unlike traditional bulk carbonates, charged-sorbent regeneration can be achieved at low temperatures (90-100 °C) and the sorbent's conductive nature permits direct Joule heating regeneration2,3 using renewable electricity. Given their highly tailorable pore environments and low cost, we anticipate that charged-sorbents will find numerous potential applications in chemical separations, catalysis and beyond.
Assuntos
Dióxido de Carbono , Dióxido de Carbono/análise , Dióxido de Carbono/química , Dióxido de Carbono/isolamento & purificação , Adsorção , Eletrodos , Hidróxidos/química , Atmosfera/química , Carbonatos/química , Ar , Temperatura , Carvão Vegetal/química , Porosidade , Carbono/químicaRESUMO
Supercapacitors are emerging as energy-efficient and robust devices for electrochemical CO2 capture. However, the impacts of electrode structure and charging protocols on CO2 capture performance remain unclear. Therefore, this study develops structure-property-performance correlations for supercapacitor electrodes at different charging conditions. We find that electrodes with large surface areas and low oxygen functionalization generally perform best, while a combination of micro- and mesopores is important to achieve fast CO2 capture rates. With these structural features and tunable charging protocols, YP80F activated carbon electrodes show the best CO2 capture performance with a capture rate of 350 mmolCO2 kg-1 h-1 and a low electrical energy consumption of 18 kJ molCO2-1 at 300 mA g-1 under CO2, together with a long lifetime over 12000 cycles at 150 mA g-1 under CO2 and excellent CO2 selectivity over N2 and O2. Operated in a "positive charging mode", the system achieves excellent electrochemical reversibility with Coulombic efficiencies over 99.8% in the presence of approximately 15% O2, alongside stable cycling performance over 1000 cycles. This study paves the way for improved supercapacitor electrodes and charging protocols for electrochemical CO2 capture.