Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(33): 13428-33, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23878210

RESUMO

Eradication of an invasive species can provide significant environmental, economic, and social benefits, but eradication programs often fail. Constant and careful monitoring improves the chance of success, but an invasion may seem to be in decline even when it is expanding in abundance or spatial extent. Determining whether an invasion is in decline is a challenging inference problem for two reasons. First, it is typically infeasible to regularly survey the entire infested region owing to high cost. Second, surveillance methods are imperfect and fail to detect some individuals. These two factors also make it difficult to determine why an eradication program is failing. Agent-based methods enable inferences to be made about the locations of undiscovered individuals over time to identify trends in invader abundance and spatial extent. We develop an agent-based Bayesian method and apply it to Australia's largest eradication program: the campaign to eradicate the red imported fire ant (Solenopsis invicta) from Brisbane. The invasion was deemed to be almost eradicated in 2004 but our analyses indicate that its geographic range continued to expand despite a sharp decline in number of nests. We also show that eradication would probably have been achieved with a relatively small increase in the area searched and treated. Our results demonstrate the importance of inferring temporal and spatial trends in ongoing invasions. The method can handle incomplete observations and takes into account the effects of human intervention. It has the potential to transform eradication practices.


Assuntos
Formigas/fisiologia , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Controle de Insetos/métodos , Espécies Introduzidas/estatística & dados numéricos , Modelos Biológicos , Animais , Teorema de Bayes , Dinâmica Populacional , Queensland
2.
Ecol Appl ; 20(5): 1217-27, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20666245

RESUMO

To eradicate or effectively contain a biological invasion, all or most reproductive individuals of the invasion must be found and destroyed. To help find individual invading organisms, predictions of probable locations can be made with statistical models. We estimated spread dynamics based on time-series data and then used model-derived predictions of probable locations of individuals. We considered one of the largest data sets available for an eradication program: the campaign to eradicate the red imported fire ant (Solenopsis invicta) from around Brisbane, Australia. After estimating within-site growth (local growth) and intersite dispersal (saltatory spread) of fire ant nests, we modeled probabilities of fire ant presence for >600000 1-ha sites, including uncertainties about fire ant population and spatial dynamics. Such a high level of spatial detail is required to assist surveillance efforts but is difficult to incorporate into common modeling methods because of high computational costs. More than twice as many fire ant nests would have been found in 2008 using predictions made with our method rather than those made with the method currently used in the study region. Our method is suited to considering invasions in which a large area is occupied by the invader at low density. Improved predictions of such invasions can dramatically reduce the area that needs to be searched to find the majority of individuals, assisting containment efforts and potentially making eradication a realistic goal for many invasions previously thought to be ineradicable.


Assuntos
Formigas , Animais , Funções Verossimilhança , Modelos Biológicos , Dinâmica Populacional , Queensland
3.
Conserv Biol ; 24(3): 691-700, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20067494

RESUMO

Habitat connectivity is required at large spatial scales to facilitate movement of biota in response to climatic changes and to maintain viable populations of wide-ranging species. Nevertheless, it may require decades to acquire habitat linkages at such scales, and areas that could provide linkages are often developed before they can be reserved. Reserve scheduling methods usually consider only current threats, but threats change over time as development spreads and reaches presently secure areas. We investigated the importance of considering future threats when implementing projects to maintain habitat connectivity at a regional scale. To do so, we compared forward-looking scheduling strategies with strategies that consider only current threats. The strategies were applied to a Costa Rican case study, where many reserves face imminent isolation and other reserves will probably become isolated in the more distant future. We evaluated strategies in terms of two landscape-scale connectivity metrics, a pure connectivity metric and a metric of connected habitat diversity. Those strategies that considered only current threats were unreliable because they often failed to complete planned habitat linkage projects. The most reliable and effective strategies considered the future spread of development and its impact on the likelihood of completing planned habitat linkage projects. Our analyses highlight the critical need to consider future threats when building connected reserve networks over time.


Assuntos
Conservação dos Recursos Naturais , Costa Rica , Ecossistema , Modelos Teóricos , Árvores
4.
Sci Rep ; 9(1): 8938, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222114

RESUMO

Accurate delimitation of the geographic range of a species is important for control of biological invasions, conservation of threatened species, and understanding species range dynamics under environmental change. However, estimating range boundaries is challenging because monitoring methods are imperfect, the area that might contain individuals is often incompletely surveyed, and species may have patchy distributions. In these circumstances, large areas can be surveyed without finding individuals despite occupancy extending beyond surveyed areas, resulting in underestimation of range limits. We developed a delimitation method that can be applied with imperfect survey data and patchy distributions. The approach is to construct polygons indicative of the geographic range of a species. Each polygon is associated with a specific probability such that each interior point of the polygon has at least that posterior probability of being interior to the true boundary according to a Bayesian model. The method uses the posterior distribution of latent quantities derived from an agent-based Bayesian model and calculates the posterior distribution of the range as a derived quantity from Markov chain Monte Carlo samples. An application of this method described here informed the Australian campaign to eradicate red imported fire ants (Solenopsis invicta).

5.
Sci Total Environ ; 621: 407-416, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29190563

RESUMO

When freshwater resources become scarce there is a trade-off between human resource demands and environmental sustainability. The cost of conserving freshwater ecosystems can potentially be reduced by implementing institutional reforms that endow environmental water managers with a permanent water entitlement and the capacity to store, trade and release water. Australia's Murray Darling Basin Plan (MDBP) includes one of the world's most ambitious programs to recover water for the environment, supported by institutional reforms that allow environmental water managers to operate in water markets. One of the anticipated benefits of the Plan is to improve the health of flood-dependent forests, which are among the most endangered ecosystems globally because of river regulation and land clearance. However, periodic flooding to conserve floodplain ecosystems in the MDB creates losses to riparian landowners such as damage to fencing and temporary loss of access to flooded land. To reduce these losses reservoir operators restrict daily water release volumes. Using a model of optimal water management in Australia's southern MDB we estimate that current reservoir operating restrictions will substantially reduce the ecological benefits of investments made to recover water for the environment. The reduction in benefits is largest if floodplain forests decline rapidly without periodic inundation. In the latter circumstances, ecological losses cannot significantly be reduced by allowing environmental water managers to operate in water markets. Our findings demonstrate that the recovery of large volumes of water for environmental purposes and water market reforms are insufficient for conserving flood-dependent ecosystems without coordination and cooperation among multiple stakeholders responsible for water and land management.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa