Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 89: 667-693, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32169021

RESUMO

Myosins are among the most fascinating enzymes in biology. As extremely allosteric chemomechanical molecular machines, myosins are involved in myriad pivotal cellular functions and are frequently sites of mutations leading to disease phenotypes. Human ß-cardiac myosin has proved to be an excellent target for small-molecule therapeutics for heart muscle diseases, and, as we describe here, other myosin family members are likely to be potentially unique targets for treating other diseases as well. The first part of this review focuses on how myosins convert the chemical energy of ATP hydrolysis into mechanical movement, followed by a description of existing therapeutic approaches to target human ß-cardiac myosin. The next section focuses on the possibility of targeting nonmuscle members of the human myosin family for several diseases. We end the review by describing the roles of myosin in parasites and the therapeutic potential of targeting them to block parasitic invasion of their hosts.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Miosinas/metabolismo , Neoplasias/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Infecções por Protozoários/tratamento farmacológico , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Fenômenos Biomecânicos , Cryptosporidium/efeitos dos fármacos , Cryptosporidium/enzimologia , Inibidores Enzimáticos/química , Expressão Gênica , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Família Multigênica , Mutação , Miosinas/antagonistas & inibidores , Miosinas/classificação , Miosinas/genética , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Plasmodium/efeitos dos fármacos , Plasmodium/enzimologia , Infecções por Protozoários/enzimologia , Infecções por Protozoários/genética , Infecções por Protozoários/patologia , Toxoplasma/efeitos dos fármacos , Toxoplasma/enzimologia
2.
Cell ; 183(2): 335-346.e13, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33035452

RESUMO

Muscle spasticity after nervous system injuries and painful low back spasm affect more than 10% of global population. Current medications are of limited efficacy and cause neurological and cardiovascular side effects because they target upstream regulators of muscle contraction. Direct myosin inhibition could provide optimal muscle relaxation; however, targeting skeletal myosin is particularly challenging because of its similarity to the cardiac isoform. We identified a key residue difference between these myosin isoforms, located in the communication center of the functional regions, which allowed us to design a selective inhibitor, MPH-220. Mutagenic analysis and the atomic structure of MPH-220-bound skeletal muscle myosin confirmed the mechanism of specificity. Targeting skeletal muscle myosin by MPH-220 enabled muscle relaxation, in human and model systems, without cardiovascular side effects and improved spastic gait disorders after brain injury in a disease model. MPH-220 provides a potential nervous-system-independent option to treat spasticity and muscle stiffness.


Assuntos
Músculo Esquelético/metabolismo , Miosinas de Músculo Esquelético/efeitos dos fármacos , Miosinas de Músculo Esquelético/genética , Adulto , Animais , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Linhagem Celular , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Masculino , Camundongos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Espasticidade Muscular/genética , Espasticidade Muscular/fisiopatologia , Músculo Esquelético/fisiologia , Miosinas/efeitos dos fármacos , Miosinas/genética , Miosinas/metabolismo , Isoformas de Proteínas , Ratos , Ratos Wistar , Miosinas de Músculo Esquelético/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(9): e2315472121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377203

RESUMO

Mutations at a highly conserved homologous residue in three closely related muscle myosins cause three distinct diseases involving muscle defects: R671C in ß-cardiac myosin causes hypertrophic cardiomyopathy, R672C and R672H in embryonic skeletal myosin cause Freeman-Sheldon syndrome, and R674Q in perinatal skeletal myosin causes trismus-pseudocamptodactyly syndrome. It is not known whether their effects at the molecular level are similar to one another or correlate with disease phenotype and severity. To this end, we investigated the effects of the homologous mutations on key factors of molecular power production using recombinantly expressed human ß, embryonic, and perinatal myosin subfragment-1. We found large effects in the developmental myosins but minimal effects in ß myosin, and magnitude of changes correlated partially with clinical severity. The mutations in the developmental myosins dramatically decreased the step size and load-sensitive actin-detachment rate of single molecules measured by optical tweezers, in addition to decreasing overall enzymatic (ATPase) cycle rate. In contrast, the only measured effect of R671C in ß myosin was a larger step size. Our measurements of step size and bound times predicted velocities consistent with those measured in an in vitro motility assay. Finally, molecular dynamics simulations predicted that the arginine to cysteine mutation in embryonic, but not ß, myosin may reduce pre-powerstroke lever arm priming and ADP pocket opening, providing a possible structural mechanism consistent with the experimental observations. This paper presents direct comparisons of homologous mutations in several different myosin isoforms, whose divergent functional effects are a testament to myosin's highly allosteric nature.


Assuntos
Miosinas , Miosinas Ventriculares , Humanos , Miosinas Ventriculares/genética , Miosinas/metabolismo , Adenosina Trifosfatases/metabolismo , Mutação , Actinas/metabolismo , Músculo Esquelético/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(19): e2318413121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683993

RESUMO

Determining the pathogenicity of hypertrophic cardiomyopathy-associated mutations in the ß-myosin heavy chain (MYH7) can be challenging due to its variable penetrance and clinical severity. This study investigates the early pathogenic effects of the incomplete-penetrant MYH7 G256E mutation on myosin function that may trigger pathogenic adaptations and hypertrophy. We hypothesized that the G256E mutation would alter myosin biomechanical function, leading to changes in cellular functions. We developed a collaborative pipeline to characterize myosin function across protein, myofibril, cell, and tissue levels to determine the multiscale effects on structure-function of the contractile apparatus and its implications for gene regulation and metabolic state. The G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 33%, resulting in more myosin heads available for contraction. Myofibrils from gene-edited MYH7WT/G256E human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exhibited greater and faster tension development. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. We demonstrated consistent hypercontractile myosin function as a primary consequence of the MYH7 G256E mutation across scales, highlighting the pathogenicity of this gene variant. Single-cell transcriptomic and metabolic profiling demonstrated upregulated mitochondrial genes and increased mitochondrial respiration, indicating early bioenergetic alterations. This work highlights the benefit of our multiscale platform to systematically evaluate the pathogenicity of gene variants at the protein and contractile organelle level and their early consequences on cellular and tissue function. We believe this platform can help elucidate the genotype-phenotype relationships underlying other genetic cardiovascular diseases.


Assuntos
Miosinas Cardíacas , Cardiomiopatia Hipertrófica , Células-Tronco Pluripotentes Induzidas , Contração Miocárdica , Miócitos Cardíacos , Cadeias Pesadas de Miosina , Humanos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Contração Miocárdica/genética , Mutação , Mitocôndrias/metabolismo , Mitocôndrias/genética , Miofibrilas/metabolismo , Respiração Celular/genética
5.
Nature ; 565(7739): 372-376, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626964

RESUMO

For more than 50 years, the methylation of mammalian actin at histidine 73 has been known to occur1. Despite the pervasiveness of His73 methylation, which we find is conserved in several model animals and plants, its function remains unclear and the enzyme that generates this modification is unknown. Here we identify SET domain protein 3 (SETD3) as the physiological actin His73 methyltransferase. Structural studies reveal that an extensive network of interactions clamps the actin peptide onto the surface of SETD3 to orient His73 correctly within the catalytic pocket and to facilitate methyl transfer. His73 methylation reduces the nucleotide-exchange rate on actin monomers and modestly accelerates the assembly of actin filaments. Mice that lack SETD3 show complete loss of actin His73 methylation in several tissues, and quantitative proteomics analysis shows that actin His73 methylation is the only detectable physiological substrate of SETD3. SETD3-deficient female mice have severely decreased litter sizes owing to primary maternal dystocia that is refractory to ecbolic induction agents. Furthermore, depletion of SETD3 impairs signal-induced contraction in primary human uterine smooth muscle cells. Together, our results identify a mammalian histidine methyltransferase and uncover a pivotal role for SETD3 and actin His73 methylation in the regulation of smooth muscle contractility. Our data also support the broader hypothesis that protein histidine methylation acts as a common regulatory mechanism.


Assuntos
Actinas/química , Actinas/metabolismo , Distocia/enzimologia , Distocia/prevenção & controle , Histidina/química , Histidina/metabolismo , Metiltransferases/metabolismo , Animais , Linhagem Celular , Feminino , Histona Metiltransferases , Histonas , Tamanho da Ninhada de Vivíparos/genética , Masculino , Metilação , Metiltransferases/deficiência , Metiltransferases/genética , Camundongos , Modelos Moleculares , Músculo Liso/citologia , Músculo Liso/fisiologia , Gravidez , Proteômica , Contração Uterina , Útero/citologia , Útero/fisiologia
6.
Annu Rev Cell Dev Biol ; 27: 133-55, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21639800

RESUMO

Unconventional myosins are a superfamily of actin-based motors implicated in diverse cellular processes. In recent years, much progress has been made in describing their biophysical properties, and headway has been made into analyzing their cellular functions. Here, we focus on the principles that guide in vivo motor function and targeting to specific cellular locations. Rather than describe each motor comprehensively, we outline the major themes that emerge from research across the superfamily and use specific examples to illustrate each. In presenting the data in this format, we seek to identify open questions in each field as well as to point out commonalities between them. To advance our understanding of myosins' roles in vivo, clearly we must identify their cellular cargoes and the protein complexes that regulate motor attachment to fully appreciate their functions on the cellular and developmental levels.


Assuntos
Actinas/metabolismo , Proteínas Motores Moleculares/metabolismo , Miosinas/metabolismo , Isoformas de Proteínas/metabolismo , Actinas/ultraestrutura , Animais , Cálcio/metabolismo , Adesão Celular , Movimento Celular , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , GTP Fosfo-Hidrolases/metabolismo , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Motores Moleculares/ultraestrutura , Miosinas/ultraestrutura , Isoformas de Proteínas/ultraestrutura , Processamento de Proteína Pós-Traducional
7.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34117120

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common inherited form of heart disease, associated with over 1,000 mutations, many in ß-cardiac myosin (MYH7). Molecular studies of myosin with different HCM mutations have revealed a diversity of effects on ATPase and load-sensitive rate of detachment from actin. It has been difficult to predict how such diverse molecular effects combine to influence forces at the cellular level and further influence cellular phenotypes. This study focused on the P710R mutation that dramatically decreased in vitro motility velocity and actin-activated ATPase, in contrast to other MYH7 mutations. Optical trap measurements of single myosin molecules revealed that this mutation reduced the step size of the myosin motor and the load sensitivity of the actin detachment rate. Conversely, this mutation destabilized the super relaxed state in longer, two-headed myosin constructs, freeing more heads to generate force. Micropatterned human induced pluripotent derived stem cell (hiPSC)-cardiomyocytes CRISPR-edited with the P710R mutation produced significantly increased force (measured by traction force microscopy) compared with isogenic control cells. The P710R mutation also caused cardiomyocyte hypertrophy and cytoskeletal remodeling as measured by immunostaining and electron microscopy. Cellular hypertrophy was prevented in the P710R cells by inhibition of ERK or Akt. Finally, we used a computational model that integrated the measured molecular changes to predict the measured traction forces. These results confirm a key role for regulation of the super relaxed state in driving hypercontractility in HCM with the P710R mutation and demonstrate the value of a multiscale approach in revealing key mechanisms of disease.


Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Mutação/genética , Contração Miocárdica/genética , Miosinas Ventriculares/genética , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Cálcio/metabolismo , Linhagem Celular , Tamanho Celular , Predisposição Genética para Doença , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Miofibrilas/metabolismo
8.
Circulation ; 144(21): 1714-1731, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34672721

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a complex disease partly explained by the effects of individual gene variants on sarcomeric protein biomechanics. At the cellular level, HCM mutations most commonly enhance force production, leading to higher energy demands. Despite significant advances in elucidating sarcomeric structure-function relationships, there is still much to be learned about the mechanisms that link altered cardiac energetics to HCM phenotypes. In this work, we test the hypothesis that changes in cardiac energetics represent a common pathophysiologic pathway in HCM. METHODS: We performed a comprehensive multiomics profile of the molecular (transcripts, metabolites, and complex lipids), ultrastructural, and functional components of HCM energetics using myocardial samples from 27 HCM patients and 13 normal controls (donor hearts). RESULTS: Integrated omics analysis revealed alterations in a wide array of biochemical pathways with major dysregulation in fatty acid metabolism, reduction of acylcarnitines, and accumulation of free fatty acids. HCM hearts showed evidence of global energetic decompensation manifested by a decrease in high energy phosphate metabolites (ATP, ADP, and phosphocreatine) and a reduction in mitochondrial genes involved in creatine kinase and ATP synthesis. Accompanying these metabolic derangements, electron microscopy showed an increased fraction of severely damaged mitochondria with reduced cristae density, coinciding with reduced citrate synthase activity and mitochondrial oxidative respiration. These mitochondrial abnormalities were associated with elevated reactive oxygen species and reduced antioxidant defenses. However, despite significant mitochondrial injury, HCM hearts failed to upregulate mitophagic clearance. CONCLUSIONS: Overall, our findings suggest that perturbed metabolic signaling and mitochondrial dysfunction are common pathogenic mechanisms in patients with HCM. These results highlight potential new drug targets for attenuation of the clinical disease through improving metabolic function and reducing mitochondrial injury.


Assuntos
Cardiomiopatia Hipertrófica/etiologia , Cardiomiopatia Hipertrófica/metabolismo , Suscetibilidade a Doenças , Metabolismo Energético , Mitocôndrias/genética , Mitocôndrias/metabolismo , Adulto , Idoso , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/terapia , Respiração Celular/genética , Biologia Computacional/métodos , Gerenciamento Clínico , Feminino , Perfilação da Expressão Gênica , Testes de Função Cardíaca , Humanos , Lipidômica , Masculino , Metaboloma , Metabolômica/métodos , Pessoa de Meia-Idade , Mitocôndrias/ultraestrutura , Mutação , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transcriptoma
9.
Nat Rev Mol Cell Biol ; 11(2): 128-37, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20094053

RESUMO

The swinging crossbridge hypothesis states that energy from ATP hydrolysis is transduced to mechanical movement of the myosin head while bound to actin. The light chain-binding region of myosin is thought to act as a lever arm that amplifies movements near the catalytic site. This model has been challenged by findings that myosin VI takes larger steps along actin filaments than early interpretations of its structure seem to allow. We now know that myosin VI does indeed operate by an unusual approximately 180 degrees lever arm swing and achieves its large step size using special structural features in its tail domain.


Assuntos
Cadeias Pesadas de Miosina/química , Animais , Domínio Catalítico , Humanos , Modelos Moleculares , Cadeias Pesadas de Miosina/metabolismo , Ligação Proteica , Multimerização Proteica
10.
Proc Natl Acad Sci U S A ; 115(35): E8143-E8152, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30104387

RESUMO

Mutations in ß-cardiac myosin, the predominant motor protein for human heart contraction, can alter power output and cause cardiomyopathy. However, measurements of the intrinsic force, velocity, and ATPase activity of myosin have not provided a consistent mechanism to link mutations to muscle pathology. An alternative model posits that mutations in myosin affect the stability of a sequestered, super relaxed state (SRX) of the protein with very slow ATP hydrolysis and thereby change the number of myosin heads accessible to actin. Here we show that purified human ß-cardiac myosin exists partly in an SRX and may in part correspond to a folded-back conformation of myosin heads observed in muscle fibers around the thick filament backbone. Mutations that cause hypertrophic cardiomyopathy destabilize this state, while the small molecule mavacamten promotes it. These findings provide a biochemical and structural link between the genetics and physiology of cardiomyopathy with implications for therapeutic strategies.


Assuntos
Benzilaminas/química , Uracila/análogos & derivados , Miosinas Ventriculares/química , Animais , Benzilaminas/farmacologia , Cardiomegalia/enzimologia , Cardiomegalia/genética , Humanos , Músculo Esquelético/enzimologia , Mutação , Suínos , Porco Miniatura , Uracila/química , Uracila/farmacologia , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo
11.
J Biol Chem ; 294(46): 17451-17462, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31582565

RESUMO

Hypertrophic cardiomyopathy (HCM) is a common genetic disorder characterized by left ventricular hypertrophy and cardiac hyper-contractility. Mutations in the ß-cardiac myosin heavy chain gene (ß-MyHC) are a major cause of HCM, but the specific mechanistic changes to myosin function that lead to this disease remain incompletely understood. Predicting the severity of any ß-MyHC mutation is hindered by a lack of detailed examinations at the molecular level. Moreover, because HCM can take ≥20 years to develop, the severity of the mutations must be somewhat subtle. We hypothesized that mutations that result in early onset disease would have more severe changes in function than do later onset mutations. Here, we performed steady-state and transient kinetic analyses of myosins carrying one of seven missense mutations in the motor domain. Of these seven, four were previously identified in early onset cardiomyopathy screens. We used the parameters derived from these analyses to model the ATP-driven cross-bridge cycle. Contrary to our hypothesis, the results indicated no clear differences between early and late onset HCM mutations. Despite the lack of distinction between early and late onset HCM, the predicted occupancy of the force-holding actin·myosin·ADP complex at [Actin] = 3 Kapp along with the closely related duty ratio (the fraction of myosin in strongly attached force-holding states), and the measured ATPases all changed in parallel (in both sign and degree of change) compared with wildtype (WT) values. Six of the seven HCM mutations were clearly distinct from a set of previously characterized DCM mutations.


Assuntos
Adenosina Trifosfatases/genética , Cardiomiopatia Hipertrófica/genética , Miosinas/genética , Miosinas Ventriculares/genética , Citoesqueleto de Actina/genética , Actinas/química , Actinas/genética , Adenosina Trifosfatases/química , Idade de Início , Cardiomiopatia Hipertrófica/patologia , Feminino , Humanos , Cinética , Masculino , Mutação de Sentido Incorreto/genética , Contração Miocárdica/genética , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/genética , Miosinas/química , Índice de Gravidade de Doença , Miosinas Ventriculares/química
12.
Proc Natl Acad Sci U S A ; 114(42): 11115-11120, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973951

RESUMO

Point mutations in genes encoding sarcomeric proteins are the leading cause of inherited primary cardiomyopathies. Among them are mutations in the TNNT2 gene that encodes cardiac troponin T (TnT). These mutations are clustered in the tropomyosin (Tm) binding region of TnT, TNT1 (residues 80-180). To understand the mechanistic changes caused by pathogenic mutations in the TNT1 region, six hypertrophic cardiomyopathy (HCM) and two dilated cardiomyopathy (DCM) mutants were studied by biochemical approaches. Binding assays in the absence and presence of actin revealed changes in the affinity of some, but not all, TnT mutants for Tm relative to WT TnT. HCM mutants were hypersensitive and DCM mutants were hyposensitive to Ca2+ in regulated actomyosin ATPase activities. To gain better insight into the disease mechanism, we modeled the structure of TNT1 and its interactions with Tm. The stability predictions made by the model correlated well with the affinity changes observed in vitro of TnT mutants for Tm. The changes in Ca2+ sensitivity showed a strong correlation with the changes in binding affinity. We suggest the primary reason by which these TNNT2 mutations between residues 92 and 144 cause cardiomyopathy is by changing the affinity of TnT for Tm within the TNT1 region.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Tropomiosina/metabolismo , Troponina T/genética , Troponina T/metabolismo , Actinas/metabolismo , Cálcio/metabolismo , Escherichia coli , Humanos , Modelos Químicos , Estrutura Molecular , Mutação
13.
J Biol Chem ; 293(23): 9017-9029, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29666183

RESUMO

Dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) can cause arrhythmias, heart failure, and cardiac death. Here, we functionally characterized the motor domains of five DCM-causing mutations in human ß-cardiac myosin. Kinetic analyses of the individual events in the ATPase cycle revealed that each mutation alters different steps in this cycle. For example, different mutations gave enhanced or reduced rate constants of ATP binding, ATP hydrolysis, or ADP release or exhibited altered ATP, ADP, or actin affinity. Local effects dominated, no common pattern accounted for the similar mutant phenotype, and there was no distinct set of changes that distinguished DCM mutations from previously analyzed HCM myosin mutations. That said, using our data to model the complete ATPase contraction cycle revealed additional critical insights. Four of the DCM mutations lowered the duty ratio (the ATPase cycle portion when myosin strongly binds actin) because of reduced occupancy of the force-holding A·M·D complex in the steady state. Under load, the A·M·D state is predicted to increase owing to a reduced rate constant for ADP release, and this effect was blunted for all five DCM mutations. We observed the opposite effects for two HCM mutations, namely R403Q and R453C. Moreover, the analysis predicted more economical use of ATP by the DCM mutants than by WT and the HCM mutants. Our findings indicate that DCM mutants have a deficit in force generation and force-holding capacity due to the reduced occupancy of the force-holding state.


Assuntos
Miosinas Cardíacas/genética , Cardiomiopatia Dilatada/genética , Cadeias Pesadas de Miosina/genética , Mutação Puntual , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Cardiomiopatia Dilatada/metabolismo , Linhagem Celular , Humanos , Cinética , Camundongos , Modelos Moleculares , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/metabolismo , Domínios Proteicos
14.
Pflugers Arch ; 471(5): 701-717, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30767072

RESUMO

Several lines of evidence suggest that the primary effect of hypertrophic cardiomyopathy mutations in human ß-cardiac myosin is hypercontractility of the heart, which leads to subsequent hypertrophy, fibrosis, and myofilament disarray. Here, I describe three perspectives on the molecular basis of this hypercontractility. The first is that hypercontractility results from changes in the fundamental parameters of the actin-activated ß-cardiac myosin chemo-mechanical ATPase cycle. The second considers that hypercontractility results from an increase in the number of functionally accessible heads in the sarcomere for interaction with actin. The final and third perspective is that load dependence of contractility is affected by cardiomyopathy mutations and small-molecule effectors in a manner that changes the power output of cardiac contraction. Experimental approaches associated with each perspective are described along with concepts of therapeutic approaches that could prove valuable in treating hypertrophic cardiomyopathy.


Assuntos
Cardiomiopatia Hipertrófica/genética , Contração Miocárdica , Miosinas Ventriculares/genética , Animais , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/fisiopatologia , Humanos , Mutação , Miosinas Ventriculares/metabolismo
15.
Proc Natl Acad Sci U S A ; 113(24): 6701-6, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27247418

RESUMO

Myosin motors are the fundamental force-generating elements of muscle contraction. Variation in the human ß-cardiac myosin heavy chain gene (MYH7) can lead to hypertrophic cardiomyopathy (HCM), a heritable disease characterized by cardiac hypertrophy, heart failure, and sudden cardiac death. How specific myosin variants alter motor function or clinical expression of disease remains incompletely understood. Here, we combine structural models of myosin from multiple stages of its chemomechanical cycle, exome sequencing data from two population cohorts of 60,706 and 42,930 individuals, and genetic and phenotypic data from 2,913 patients with HCM to identify regions of disease enrichment within ß-cardiac myosin. We first developed computational models of the human ß-cardiac myosin protein before and after the myosin power stroke. Then, using a spatial scan statistic modified to analyze genetic variation in protein 3D space, we found significant enrichment of disease-associated variants in the converter, a kinetic domain that transduces force from the catalytic domain to the lever arm to accomplish the power stroke. Focusing our analysis on surface-exposed residues, we identified a larger region significantly enriched for disease-associated variants that contains both the converter domain and residues on a single flat surface on the myosin head described as the myosin mesa. Notably, patients with HCM with variants in the enriched regions have earlier disease onset than patients who have HCM with variants elsewhere. Our study provides a model for integrating protein structure, large-scale genetic sequencing, and detailed phenotypic data to reveal insight into time-shifted protein structures and genetic disease.


Assuntos
Miosinas Cardíacas/química , Miosinas Cardíacas/genética , Bases de Dados Genéticas , Variação Genética , Modelos Moleculares , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Miosinas Cardíacas/metabolismo , Cardiomegalia/enzimologia , Cardiomegalia/genética , Morte Súbita Cardíaca , Feminino , Doenças Genéticas Inatas/enzimologia , Doenças Genéticas Inatas/genética , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Humanos , Masculino , Cadeias Pesadas de Miosina/metabolismo , Relação Estrutura-Atividade
16.
J Biol Chem ; 290(11): 7003-15, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548289

RESUMO

The most frequent known causes of primary cardiomyopathies are mutations in the genes encoding sarcomeric proteins. Among those are 30 single-residue mutations in TPM1, the gene encoding α-tropomyosin. We examined seven mutant tropomyosins, E62Q, D84N, I172T, L185R, S215L, D230N, and M281T, that were chosen based on their clinical severity and locations along the molecule. The goal of our study was to determine how the biochemical characteristics of each of these mutant proteins are altered, which in turn could provide a structural rationale for treatment of the cardiomyopathies they produce. Measurements of Ca(2+) sensitivity of human ß-cardiac myosin ATPase activity are consistent with the hypothesis that hypertrophic cardiomyopathies are hypersensitive to Ca(2+) activation, and dilated cardiomyopathies are hyposensitive. We also report correlations between ATPase activity at maximum Ca(2+) concentrations and conformational changes in TnC measured using a fluorescent probe, which provide evidence that different substitutions perturb the structure of the regulatory complex in different ways. Moreover, we observed changes in protein stability and protein-protein interactions in these mutants. Our results suggest multiple mechanistic pathways to hypertrophic and dilated cardiomyopathies. Finally, we examined a computationally designed mutant, E181K, that is hypersensitive, confirming predictions derived from in silico structural analysis.


Assuntos
Actinas/metabolismo , Cálcio/metabolismo , Cardiomiopatias/genética , Mutação Puntual , Tropomiosina/genética , Tropomiosina/metabolismo , Adenosina Trifosfatases/metabolismo , Cardiomiopatias/metabolismo , Humanos , Modelos Moleculares , Miosinas/metabolismo , Estabilidade Proteica , Tropomiosina/química
17.
J Exp Biol ; 219(Pt 2): 161-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26792326

RESUMO

Hypertrophic cardiomyopathy is the most frequently occurring inherited cardiovascular disease, with a prevalence of more than one in 500 individuals worldwide. Genetically acquired dilated cardiomyopathy is a related disease that is less prevalent. Both are caused by mutations in the genes encoding the fundamental force-generating protein machinery of the cardiac muscle sarcomere, including human ß-cardiac myosin, the motor protein that powers ventricular contraction. Despite numerous studies, most performed with non-human or non-cardiac myosin, there is no clear consensus about the mechanism of action of these mutations on the function of human ß-cardiac myosin. We are using a recombinantly expressed human ß-cardiac myosin motor domain along with conventional and new methodologies to characterize the forces and velocities of the mutant myosins compared with wild type. Our studies are extending beyond myosin interactions with pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin, the roles of regulatory light chain phosphorylation on the functions of the system, and the possible roles of myosin binding protein-C and titin, important regulatory components of both cardiac and skeletal muscles.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Mutação/genética , Miosinas Ventriculares/genética , Fenômenos Biomecânicos/genética , Humanos , Modelos Biológicos
18.
Proc Natl Acad Sci U S A ; 110(31): 12607-12, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23798412

RESUMO

Cardiovascular disorders are the leading cause of morbidity and mortality in the developed world, and hypertrophic cardiomyopathy (HCM) is among the most frequently occurring inherited cardiac disorders. HCM is caused by mutations in the genes encoding the fundamental force-generating machinery of the cardiac muscle, including ß-cardiac myosin. Here, we present a biomechanical analysis of the HCM-causing mutation, R453C, in the context of human ß-cardiac myosin. We found that this mutation causes a ∼30% decrease in the maximum ATPase of the human ß-cardiac subfragment 1, the motor domain of myosin, and a similar percent decrease in the in vitro velocity. The major change in the R453C human ß-cardiac subfragment 1 is a 50% increase in the intrinsic force of the motor compared with wild type, with no appreciable change in the stroke size, as observed with a dual-beam optical trap. These results predict that the overall force of the ensemble of myosin molecules in the muscle should be higher in the R453C mutant compared with wild type. Loaded in vitro motility assay confirms that the net force in the ensemble is indeed increased. Overall, this study suggests that the R453C mutation should result in a hypercontractile state in the heart muscle.


Assuntos
Miosinas Cardíacas/metabolismo , Cardiomegalia/metabolismo , Movimento Celular , Doenças Genéticas Inatas/metabolismo , Mutação de Sentido Incorreto , Miocárdio/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Substituição de Aminoácidos , Animais , Miosinas Cardíacas/genética , Cardiomegalia/genética , Cardiomegalia/patologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Células HEK293 , Humanos , Camundongos , Miocárdio/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Pinças Ópticas
19.
Biochem Soc Trans ; 43(1): 64-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25619247

RESUMO

No matter how many times one explores the structure of the myosin molecule, there is always something new to discover. Here, I describe the myosin mesa, a structural feature of the motor domain that has the characteristics of a binding domain for another protein, possibly myosin-binding protein C (MyBP-C). Interestingly, many well-known hypertrophic cardiomyopathy (HCM) mutations lie along this surface and may affect the putative interactions proposed here. A potential unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy is discussed here. It involves increased power output of the cardiac muscle as a result of HCM mutations causing the release of inhibition by myosin binding protein C.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Miosinas/química , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/fisiologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Miosinas/fisiologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
20.
BMC Med Genet ; 16: 97, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26498512

RESUMO

BACKGROUND: As next generation sequencing for the genetic diagnosis of cardiovascular disorders becomes more widely used, establishing causality for putative disease causing variants becomes increasingly relevant. Diseases of the cardiac sarcomere provide a particular challenge in this regard because of the complexity of assaying the effect of genetic variants in human cardiac contractile proteins. RESULTS: In this study we identified a novel variant R205Q in the cardiac troponin T gene (TNNT2). Carriers of the variant allele exhibited increased chamber volumes associated with decreased left ventricular ejection fraction. To clarify the causal role of this variant, we generated recombinant variant human protein and examined its calcium kinetics as well as the maximally activated ADP release of human ß-cardiac myosin with regulated thin filaments containing the mutant troponin T. We found that the R205Q mutation significantly decreased the calcium sensitivity of the thin filament by altering the effective calcium dissociation kinetics. CONCLUSIONS: The development of moderate throughput post-genomic assays is an essential step in the realization of the potential of next generation sequencing. Although technically challenging, biochemical and functional assays of human cardiac contractile proteins of the thin filament can be achieved and provide an orthogonal source of information to inform the question of causality for individual variants.


Assuntos
Cálcio/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Mutação , Troponina T/genética , Troponina T/metabolismo , Adulto , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Humanos , Técnicas In Vitro , Masculino , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Volume Sistólico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa