Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(1): e0175923, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38112453

RESUMO

The isolation and selection of yeast strains to improve the quality of the cachaça-Brazilian Spirit-have been studied in our research group. Our strategy considers Saccharomyces cerevisiae as the predominant species involved in sugarcane juice fermentation and the presence of different stressors (osmolarity, temperature, ethanol content, and competition with other microorganisms). It also considers producing balanced concentrations of volatile compounds (higher alcohols and acetate and/or ethyl esters), flocculation capacity, and ethanol production. Since the genetic bases behind these traits of interest are not fully established, the whole genome sequencing of 11 different Saccharomyces cerevisiae strains isolated and selected from different places was analyzed to identify the presence of a specific genetic variation common to cachaça yeast strains. We have identified 20,128 single-nucleotide variants shared by all genomes. Of these shared variants, 37 were new variants (being six missenses), and 4,451 were identified as missenses. We performed a detailed functional annotation (using enrichment analysis, protein-protein interaction network analysis, and database and in-depth literature searches) of these new and missense variants. Many genes carrying these variations were involved in the phenotypes of flocculation, tolerance to fermentative stresses, and production of volatile compounds and ethanol. These results demonstrate the existence of a genetic profile shared by the 11 strains under study that could be associated with the applied selective strategy. Thus, this study points out genes and variants that may be used as molecular markers for selecting strains well suited to the fermentation process, including genetic improvement by genome editing, ultimately producing high-quality beverages and adding value.IMPORTANCEThis work demonstrates the existence of new genetic markers related to different phenotypes used to select yeast strains and mutations in genes directly involved in producing flavoring compounds and ethanol, and others related to flocculation and stress resistance.


Assuntos
Perfil Genético , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fermentação , Etanol , Fenótipo , Genômica
2.
Biotechnol Lett ; 46(2): 201-211, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38280177

RESUMO

OBJECTIVES: Apiosidases are enzymes that cleave the glycosidic bond between the monosaccharides linked to apiose, a branched chain furanose found in the cell walls of vascular plants and aquatic monocots. There is biotechnological interest in this enzyme group because apiose is the flavor-active compound of grapes, fruit juice, and wine, and the monosaccharide is found to be a plant secondary metabolite with pharmaceutical properties. However, functional and structural studies of this enzyme family are scarce. Recently, a glycoside hydrolase family member GH140 was isolated from Bacteroides thetaiotaomicron and identified as an endo-apiosidase. RESULTS: The structural characterization and functional identification of a second GH140 family enzyme, termed MmApi, discovered through mangrove soil metagenomic approach, are described. Among the various substrates tested, MmApi exhibited activity on an apiose-containing oligosaccharide derived from the pectic polysaccharide rhamnogalacturonan-II. While the crystallographic model of MmApi was similar to the endo-apiosidase from Bacteroides thetaiotaomicron, differences in the shape of the binding sites indicated that MmApi could cleave apioses within oligosaccharides of different compositions. CONCLUSION: This enzyme represents a novel tool for researchers interested in studying the physiology and structure of plant cell walls and developing biocatalytic strategies for drug and flavor production.


Assuntos
Microbiota , Polissacarídeos , Oligossacarídeos/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , Monossacarídeos
3.
J Biol Chem ; 298(5): 101891, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378128

RESUMO

Deciphering how enzymes interact, modify, and recognize carbohydrates has long been a topic of interest in academic, pharmaceutical, and industrial research. Carbohydrate-binding modules (CBMs) are noncatalytic globular protein domains attached to carbohydrate-active enzymes that strengthen enzyme affinity to substrates and increase enzymatic efficiency via targeting and proximity effects. CBMs are considered auspicious for various biotechnological purposes in textile, food, and feed industries, representing valuable tools in basic science research and biomedicine. Here, we present the first crystallographic structure of a CBM8 family member (CBM8), DdCBM8, from the slime mold Dictyostelium discoideum, which was identified attached to an endo-ß-1,4-glucanase (glycoside hydrolase family 9). We show that the planar carbohydrate-binding site of DdCBM8, composed of aromatic residues, is similar to type A CBMs that are specific for crystalline (multichain) polysaccharides. Accordingly, pull-down assays indicated that DdCBM8 was able to bind insoluble forms of cellulose. However, affinity gel electrophoresis demonstrated that DdCBM8 also bound to soluble (single chain) polysaccharides, especially glucomannan, similar to type B CBMs, although it had no apparent affinity for oligosaccharides. Therefore, the structural characteristics and broad specificity of DdCBM8 represent exceptions to the canonical CBM classification. In addition, mutational analysis identified specific amino acid residues involved in ligand recognition, which are conserved throughout the CBM8 family. This advancement in the structural and functional characterization of CBMs contributes to our understanding of carbohydrate-active enzymes and protein-carbohydrate interactions, pushing forward protein engineering strategies and enhancing the potential biotechnological applications of glycoside hydrolase accessory modules.


Assuntos
Dictyostelium , Carboidratos/química , Cristalografia por Raios X , Dictyostelium/metabolismo , Glucanos/metabolismo , Glicosídeo Hidrolases , Ligantes , Polissacarídeos/metabolismo
4.
Appl Microbiol Biotechnol ; 107(13): 4165-4185, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37212882

RESUMO

The biorefinery concept, in which biomass is utilized for the production of fuels and chemicals, emerges as an eco-friendly, cost-effective, and renewable alternative to petrochemical-based production. The hydroxycinnamic acid fraction of lignocellulosic biomass represents an untapped source of aromatic molecules that can be converted to numerous high-value products with industrial applications, including in the flavor and fragrance sector and pharmaceuticals. This review describes several biochemical pathways useful in the development of a biorefinery concept based on the biocatalytic conversion of the hydroxycinnamic acids ferulic, caffeic, and p-coumaric acid into high-value molecules. KEY POINTS: • The phenylpropanoids bioconversion pathways in the context of biorefineries • Description of pathways from hydroxycinnamic acids to high-value compounds • Metabolic engineering and synthetic biology advance hydroxycinnamic acid-based biorefineries.


Assuntos
Vias Biossintéticas , Ácidos Cumáricos , Ácidos Cumáricos/metabolismo , Biomassa , Biocatálise , Engenharia Metabólica
5.
Biotechnol Appl Biochem ; 70(3): 1015-1023, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36441921

RESUMO

Lectins are carbohydrate-binding proteins belonging to the Leguminosae family. In this family stand out proteins extracted from species belonging to Diocleinae subtribe, which includes, for example, the seed lectin from Dioclea violacea (DVL) and the jack bean lectin Concanavalin A (ConA). Here, we report the photosynthesis of silver/silver chloride nanoparticles (NPs) assisted by ConA and DVL. The syntheses were simple processes using a green-chemistry approach. Under electron microscopy, NPs heterogeneous in size, nearly spherical and covered by a thin lectin corona, were observed. Both NPs assisted by lectins were capable to cause strong rabbit erythrocytes agglutination with the same titers of hemagglutinating activities. These results indicate that both lectins maintained their biological activities even after association with the NPs and therefore are able to interact with biological membrane carbohydrates. However, for rabbit erythrocytes treated with proteolytic enzymes were observed different titers of hemagglutinating activities, suggesting differences in the spatial arrangement of the lectins on the surface of the NPs. This study provides evidences that these hybrid lectin-coated silver/silver chloride NPs can be used for selective recognition and interaction with membrane carbohydrates and others biotechnological applications.


Assuntos
Lectinas , Lectinas de Plantas , Animais , Coelhos , Lectinas/química , Lectinas de Plantas/farmacologia , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Prata/farmacologia , Carboidratos/química , Fotossíntese
6.
J Biol Chem ; 296: 100385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556371

RESUMO

Glycoside hydrolases (GHs) are involved in the degradation of a wide diversity of carbohydrates and present several biotechnological applications. Many GH families are composed of enzymes with a single well-defined specificity. In contrast, enzymes from the GH16 family can act on a range of different polysaccharides, including ß-glucans and galactans. SCLam, a GH16 member derived from a soil metagenome, an endo-ß-1,3(4)-glucanase (EC 3.2.1.6), can cleave both ß-1,3 and ß-1,4 glycosidic bonds in glucans, such as laminarin, barley ß-glucan, and cello-oligosaccharides. A similar cleavage pattern was previously reported for other GH16 family members. However, the molecular mechanisms for this dual cleavage activity on (1,3)- and (1,4)-ß-D-glycosidic bonds by laminarinases have not been elucidated. In this sense, we determined the X-ray structure of a presumably inactive form of SCLam cocrystallized with different oligosaccharides. The solved structures revealed general bound products that are formed owing to residual activities of hydrolysis and transglycosylation. Biochemical and biophysical analyses and molecular dynamics simulations help to rationalize differences in activity toward different substrates. Our results depicted a bulky aromatic residue near the catalytic site critical to select the preferable configuration of glycosidic bonds in the binding cleft. Altogether, these data contribute to understanding the structural basis of recognition and hydrolysis of ß-1,3 and ß-1,4 glycosidic linkages of the laminarinase enzyme class, which is valuable for future studies on the GH16 family members and applications related to biomass conversion into feedstocks and bioproducts.


Assuntos
Proteínas de Bactérias/metabolismo , Celulases/metabolismo , Glucanos/metabolismo , Proteínas de Bactérias/química , Sequência de Carboidratos , Domínio Catalítico , Celulases/química , Cristalografia por Raios X/métodos , Glucanos/classificação , Glicosídeos/química , Glicosídeos/metabolismo , Hidrólise , Simulação de Dinâmica Molecular , Microbiologia do Solo , Especificidade por Substrato
7.
Protein Expr Purif ; 190: 105994, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34655732

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are metalloenzymes that cleave structural polysaccharides through an oxidative mechanism. The enzymatic activity of LPMOs relies on the presence of a Cu2+ histidine-brace motif in their flat catalytic surface. Upon reduction by an external electron donor and in the presence of its co-substrates, O2 or H2O2, LPMOs can generate reactive oxygen species to oxidize the substrates. Fungal and bacterial LPMOs are involved in the catabolism of polysaccharides, such as chitin, cellulose, and hemicelluloses, and virulence mechanisms. Based on the reports on the discovery of LPMOs from the family AA15 in termites, firebrats, and flies, the functional role of the LPMO in the biosphere could expand, as these enzymes may be correlated with chitin remodeling and molting in insects. However, there is limited knowledge of AA15 LPMOs due to difficulties in recombinant expression of soluble proteins and purification protocols. In this study, we describe a protocol for the cloning, expression, and purification of insect AA15 LPMOs from Arthropoda, mainly from termites, followed by the expression and purification of an AA15 LPMO from the silkworm Bombyx mori, which contains a relatively high number of disulfide bonds. We also report the recombinant expression and purification of a protein with homology to AA15 family from the western European honeybee Apis mellifera, an LPMO-like enzyme lacking the canonical histidine brace. Therefore, this work can support future studies concerning the role of LPMOs in the biology of insects and inspire molecular entomologists and insect biochemists in conducting activities in this field.


Assuntos
Abelhas/genética , Escherichia coli , Expressão Gênica , Proteínas de Insetos , Oxigenases de Função Mista , Animais , Abelhas/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Insetos/biossíntese , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Oxigenases de Função Mista/biossíntese , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
8.
Protein Expr Purif ; 197: 106109, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35533785

RESUMO

The ferulic acid (FA) represents a high-value molecule with applications in the cosmetic and pharmaceutical industries. This aromatic molecule is derived from lignin and can be enzymatically converted in other commercially interesting molecules, such as vanillin and bioplastics. This process starts with a common step of FA activation via CoA-thioesterification, catalyzed by feruloyl-CoA synthetases. Therefore, here, we report the successfully expression, purification as well as the initial structural and biochemical characterization of a stable, correctly folded, and catalytically active bacterial feruloyl-CoA synthase (here named FCS3) isolated from a lignin-degrading microbial consortium. The purification of recombinant FCS3 to near homogeneity was achieved using affinity chromatography. The FCS3 structure is composed of a mixture of α and ß secondary structures and most likely forms stable homodimers in solution. The FCS3 presented a notable structural stability at alkaline pH values and it was able to convert FA and coenzyme A (CoA) into feruloyl-CoA complex at room temperature. This study should provide a useful basis for future biotechnological applications of FCS3, especially in the field of conversion of lignin-derived FA into high value compounds.


Assuntos
Benzaldeídos , Lignina , Acil Coenzima A/metabolismo , Benzaldeídos/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/metabolismo
9.
Appl Microbiol Biotechnol ; 106(7): 2503-2516, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35352150

RESUMO

The biocatalytic production of fuels and chemicals from plant biomass represents an attractive alternative to fossil fuel-based refineries. In this context, the mining and characterization of novel biocatalysts can promote disruptive innovation opportunities in the field of lignocellulose conversion and valorization. In the present work, we conducted the biochemical and structural characterization of two novel hydroxycinnamic acid catabolic enzymes, isolated from a lignin-degrading microbial consortium, a feruloyl-CoA synthetase, and a feruloyl-CoA hydratase-lyase, named LM-FCS2 and LM-FCHL2, respectively. Besides establishing the homology model structures for novel FCS and FCHL members with unique characteristics, the enzymes presented interesting biochemical features: LM-FCS2 showed stability in alkaline pHs and was able to convert a wide array of p-hydroxycinnamic acids to their respective CoA-thioesters, including sinapic acid; LM-FCHL2 efficiently converted feruloyl-CoA and p-coumaroyl-CoA into vanillin and 4-hydroxybenzaldehyde, respectively, and could produce vanillin directly from ferulic acid. The coupled reaction of LM-FCS2 and LM-FCHL2 produced vanillin, not only from commercial ferulic acid but also from a crude lignocellulosic hydrolysate. Collectively, this work illuminates the structure and function of two critical enzymes involved in converting ferulic acid into high-value molecules, thus providing valuable concepts applied to the development of plant biomass biorefineries. KEY POINTS: • Comprehensive characterization of feruloyl-CoA synthetase from metagenomic origin. • Novel low-resolution structures of hydroxycinnamate catabolic enzymes. • Production of vanillin via enzymatic reaction using lignocellulosic hydrolysates.


Assuntos
Lignina , Metagenoma , Escherichia coli/genética , Hiperlipidemia Familiar Combinada , Lignina/metabolismo , Solo
10.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32680862

RESUMO

Lignocellulose is one of the most abundant renewable carbon sources, representing an alternative to petroleum for the production of fuel and chemicals. Nonetheless, the lignocellulose saccharification process, to release sugars for downstream applications, is one of the most crucial factors economically challenging to its use. The synergism required among the various carbohydrate-active enzymes (CAZymes) for efficient lignocellulose breakdown is often not satisfactorily achieved with an enzyme mixture from a single strain. To overcome this challenge, enrichment strategies can be applied to develop microbial communities with an efficient CAZyme arsenal, incorporating complementary and synergistic properties, to improve lignocellulose deconstruction. We report a comprehensive and deep analysis of an enriched rumen anaerobic consortium (ERAC) established on sugarcane bagasse (SB). The lignocellulolytic abilities of the ERAC were confirmed by analyzing the depolymerization of bagasse by scanning electron microscopy, enzymatic assays, and mass spectrometry. Taxonomic analysis based on 16S rRNA sequencing elucidated the community enrichment process, which was marked by a higher abundance of Firmicutes and Synergistetes species. Shotgun metagenomic sequencing of the ERAC disclosed 41 metagenome-assembled genomes (MAGs) harboring cellulosomes and polysaccharide utilization loci (PULs), along with a high diversity of CAZymes. The amino acid sequences of the majority of the predicted CAZymes (60% of the total) shared less than 90% identity with the sequences found in public databases. Additionally, a clostridial MAG identified in this study produced proteins during consortium development with scaffoldin domains and CAZymes appended to dockerin modules, thus representing a novel cellulosome-producing microorganism.IMPORTANCE The lignocellulolytic ERAC displays a unique set of plant polysaccharide-degrading enzymes (with multimodular characteristics), cellulosomal complexes, and PULs. The MAGs described here represent an expansion of the genetic content of rumen bacterial genomes dedicated to plant polysaccharide degradation, therefore providing a valuable resource for the development of biocatalytic toolbox strategies to be applied to lignocellulose-based biorefineries.


Assuntos
Bactérias Anaeróbias/metabolismo , Proteínas de Bactérias/metabolismo , Celulossomas/metabolismo , Microbioma Gastrointestinal , Lignina/metabolismo , Consórcios Microbianos , Polissacarídeos/metabolismo , Animais , Bactérias Anaeróbias/enzimologia , Celulases/metabolismo , Celulose , Rúmen/microbiologia , Saccharum
11.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32737130

RESUMO

Deletion of the pcaHG genes, encoding protocatechuate 3,4-dioxygenase in Rhodococcus jostii RHA1, gives a gene deletion strain still able to grow on protocatechuic acid as the sole carbon source, indicating a second degradation pathway for protocatechuic acid. Metabolite analysis of wild-type R. jostii RHA1 grown on medium containing vanillin or protocatechuic acid indicated the formation of hydroxyquinol (benzene-1,2,4-triol) as a downstream product. Gene cluster ro01857-ro01860 in Rhodococcus jostii RHA1 contains genes encoding hydroxyquinol 1,2-dioxygenase and maleylacetate reductase for degradation of hydroxyquinol but also putative mono-oxygenase (ro01860) and putative decarboxylase (ro01859) genes, and a similar gene cluster is found in the genome of lignin-degrading Agrobacterium species. Recombinant R. jostii mono-oxygenase and decarboxylase enzymes in combination were found to convert protocatechuic acid to hydroxyquinol. Hence, an alternative pathway for degradation of protocatechuic acid via oxidative decarboxylation to hydroxyquinol is proposed.IMPORTANCE There is a well-established paradigm for degradation of protocatechuic acid via the ß-ketoadipate pathway in a range of soil bacteria. In this study, we have found the existence of a second pathway for degradation of protocatechuic acid in Rhodococcus jostii RHA1, via hydroxyquinol (benzene-1,2,4-triol), which establishes a metabolic link between protocatechuic acid and hydroxyquinol. The presence of this pathway in a lignin-degrading Agrobacterium sp. strain suggests the involvement of the hydroxyquinol pathway in the metabolism of degraded lignin fragments.


Assuntos
Agrobacterium/metabolismo , Proteínas de Bactérias/genética , Hidroquinonas/metabolismo , Hidroxibenzoatos/metabolismo , Lignina/metabolismo , Rhodococcus/metabolismo , Proteínas de Bactérias/metabolismo , Deleção de Genes , Redes e Vias Metabólicas , Família Multigênica
12.
Appl Microbiol Biotechnol ; 104(8): 3305-3320, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32088760

RESUMO

Although several bacterial lignin-oxidising enzymes have been discovered in recent years, it is not yet clear whether different lignin-degrading bacteria use similar mechanisms for lignin oxidation and degradation of lignin fragments. Genome sequences of 13 bacterial lignin-oxidising bacteria, including new genome sequences for Microbacterium phyllosphaerae and Agrobacterium sp., were analysed for the presence of lignin-oxidising enzymes and aromatic degradation gene clusters that could be used to metabolise the products of lignin degradation. Ten bacterial genomes contain DyP-type peroxidases, and ten bacterial strains contain putative multi-copper oxidases (MCOs), both known to have activity for lignin oxidation. Only one strain lacks both MCOs and DyP-type peroxidase genes. Eleven bacterial genomes contain aromatic degradation gene clusters, of which ten contain the central ß-ketoadipate pathway, with variable numbers and types of degradation clusters for other aromatic substrates. Hence, there appear to be diverse metabolic strategies used for lignin oxidation in bacteria, while the ß-ketoadipate pathway appears to be the most common route for aromatic metabolism in lignin-degrading bacteria.


Assuntos
Bactérias/enzimologia , Bactérias/genética , Genoma Bacteriano , Lignina/metabolismo , Agrobacterium/enzimologia , Agrobacterium/genética , Proteínas de Bactérias/metabolismo , Fenômenos Bioquímicos , Genômica , Engenharia Metabólica , Microbacterium/enzimologia , Microbacterium/genética , Oxirredução , Oxirredutases/metabolismo , Peroxidases/metabolismo
13.
Appl Microbiol Biotechnol ; 104(19): 8309-8326, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32813063

RESUMO

Arabinanases from glycoside hydrolase family GH93 are enzymes with exo-activity that hydrolyze the α-1,5 bonds between arabinose residues present on arabinan. Currently, several initiatives aiming to use byproducts rich in arabinan such as pectin and sugar beet pulp as raw material to produce various compounds of interest are being developed. However, it is necessary to use robust enzymes that have an optimal performance under pH and temperature conditions used in the industrial processes. In this work, the first GH93 from the thermophilic fungus Thermothielavioides terrestris (Abn93T) was heterologously expressed in Aspergillus nidulans, purified and biochemically characterized. The enzyme is a thermophilic glycoprotein (optimum activity at 70 °C) with prolonged stability in acid pHs (4.0 to 6.5). The presence of glycosylation affected slightly the hydrolytic capacity of the enzyme, which was further increased by 34% in the presence of 1 mM CoCl2. Small-angle X-ray scattering results show that Abn93T is a globular-like-shaped protein with a slight bulge at one end. The hydrolytic mechanism of the enzyme was elucidated using capillary zone electrophoresis and molecular docking calculations. Abn93T has an ability to produce (in synergism with arabinofuranosidases) arabinose and arabinobiose from sugar beet arabinan, which can be explored as fermentable sugars and prebiotics. KEY POINTS: • Thermophilic exo-arabinanase from family GH93 • Molecular basis of arabinan depolymerization.


Assuntos
Arabinose , Glicosídeo Hidrolases , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Sordariales , Especificidade por Substrato
14.
Genet Mol Biol ; 43(3): e20190122, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32511662

RESUMO

Wickerhamomyces anomalus LBCM1105 is a yeast isolated from cachaça distillery fermentation vats, notable for exceptional glycerol consumption ability. We report its draft genome with 20.5x in-depth coverage and around 90% extension and completeness. It harbors the sequences of proteins involved in glycerol transport and metabolism.

15.
World J Microbiol Biotechnol ; 36(11): 166, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000321

RESUMO

The physicochemical pretreatment is an important step to reduce biomass recalcitrance and facilitate further processing of plant lignocellulose into bioproducts. This process results in soluble and insoluble biomass fractions, and both may contain by-products that inhibit enzymatic biocatalysts and microbial fermentation. These fermentation inhibitory compounds (ICs) are produced during the degradation of lignin and sugars, resulting in phenolic and furanic compounds, and carboxylic acids. Therefore, detoxification steps may be required to improve lignocellulose conversion by microoganisms. Several physical and chemical methods, such as neutralization, use of activated charcoal and organic solvents, have been developed and recommended for removal of ICs. However, biological processes, especially enzyme-based, have been shown to efficiently remove ICs with the advantage of minimizing environmental issues since they are biogenic catalysts and used in low quantities. This review focuses on describing several enzymatic approaches to promote detoxification of lignocellulosic hydrolysates and improve the performance of microbial fermentation for the generation of bioproducts. Novel strategies using classical carbohydrate active enzymes (CAZymes), such as laccases (AA1) and peroxidases (AA2), as well as more advanced strategies using prooxidant, antioxidant and detoxification enzymes (dubbed as PADs), i.e. superoxide dismutases, are discussed as perspectives in the field.


Assuntos
Biomassa , Lignina/metabolismo , Ácidos Carboxílicos/metabolismo , Fermentação , Lacase/metabolismo , Peroxidases/metabolismo , Superóxido Dismutase/metabolismo
16.
New Phytol ; 218(1): 81-93, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29315591

RESUMO

Feruloylation of arabinoxylan (AX) in grass cell walls is a key determinant of recalcitrance to enzyme attack, making it a target for improvement of grass crops, and of interest in grass evolution. Definitive evidence on the genes responsible is lacking so we studied a candidate gene that we identified within the BAHD acyl-CoA transferase family. We used RNA interference (RNAi) silencing of orthologs in the model grasses Setaria viridis (SvBAHD01) and Brachypodium distachyon (BdBAHD01) and determined effects on AX feruloylation. Silencing of SvBAHD01 in Setaria resulted in a c. 60% decrease in AX feruloylation in stems consistently across four generations. Silencing of BdBAHD01 in Brachypodium stems decreased feruloylation much less, possibly due to higher expression of functionally redundant genes. Setaria SvBAHD01 RNAi plants showed: no decrease in total lignin, approximately doubled arabinose acylated by p-coumarate, changes in two-dimensional NMR spectra of unfractionated cell walls consistent with biochemical estimates, no effect on total biomass production and an increase in biomass saccharification efficiency of 40-60%. We provide the first strong evidence for a key role of the BAHD01 gene in AX feruloylation and demonstrate that it is a promising target for improvement of grass crops for biofuel, biorefining and animal nutrition applications.


Assuntos
Biomassa , Parede Celular/metabolismo , Coenzima A-Transferases/genética , Ácidos Cumáricos/metabolismo , Genes de Plantas , Setaria (Planta)/enzimologia , Setaria (Planta)/genética , Supressão Genética , Ácidos/metabolismo , Brachypodium/genética , Metabolismo dos Carboidratos , Coenzima A-Transferases/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Hidrólise , Lignina/metabolismo , Espectroscopia de Ressonância Magnética , Tamanho do Órgão , Filogenia , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimento , Transcriptoma/genética , Xilanos/metabolismo
17.
Microb Ecol ; 76(2): 492-505, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29270662

RESUMO

It has been suggested that food storage inside the nest may offer termites with a nutritional provision during low resource availability. Additionally, feces employed as construction material provide an excellent environment for colonization by microorganisms and, together with the storage of plant material inside the nest, could thus provide some advantage to the termites in terms of lignocellulose decomposition. Here, we conducted for the first time a comprehensive study of the microbial communities associated to a termite exhibiting food storage behavior using Illumina sequencing of the 16S and (ITS2) regions of rRNA genes, together with enzymatic assays and data collected in the field. Cornitermes cumulans (Syntermitinae) stored grass litter in nodules made from feces and saliva located in the nest core. The amount of nodules increased with nest size and isolation, and interestingly, the soluble fraction of extracts from nodules showed a higher activity against hemicellulosic substrates compared to termite guts. Actinobacteria and Sordariales dominated microbial communities of food nodules and nest walls, whereas Spirochetes and Pleosporales dominated gut samples of C. cumulans. Within Syntermitinae, however, gut bacterial assemblages were dissimilar. On the other hand, there is a remarkable convergence of the bacterial community structure of Termitidae nests. Our results suggest that the role of nodules could be related to food storage; however, the higher xylanolytic activity in the nodules and their associated microbiota could also provide C. cumulans with an external source of predigested polysaccharides, which might be advantageous in comparison with litter-feeding termites that do not display food storage behavior.


Assuntos
Armazenamento de Alimentos , Isópteros/microbiologia , Microbiota/fisiologia , Polissacarídeos/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Comportamento Animal , DNA Bacteriano/genética , Ensaios Enzimáticos , Fezes/microbiologia , Fungos/classificação , Fungos/genética , Microbioma Gastrointestinal , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/microbiologia , Genes de RNAr/genética , Lignina/metabolismo , Comportamento de Nidação , Filogenia , RNA Ribossômico 16S/genética , Saliva/microbiologia , Análise de Sequência de DNA
18.
Curr Microbiol ; 75(12): 1609-1618, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30209570

RESUMO

The evolution of the symbiotic association with microbes allowed termites to decompose ingested lignocellulose from plant-derived substrates, including herbivore dung and soil humus. Representatives of the Syntermitinae (Termitidae) range in their feeding habits from wood and litter-feeding to humus-feeding species. However, only limited information is available about their feeding ecology and associated microbial communities. Here we conducted a study of the microbial communities associated to the termite Procornitermes araujoi using Illumina sequencing of the 16S and ITS rRNA genes. This species has been previously included in different feeding guilds. However, most aspects of its feeding ecology are unknown, especially those associated to its symbiotic microbiota. Our results showed that the microbial communities of termite guts and nest substrates of P. araujoi differed significantly for bacteria and fungi. Firmicutes dominated the bacterial gut community of both workers and soldiers, whereas Actinobacteria was found in higher prevalence in the nest walls. Sordariomycetes was the most abundant fungal class in both gut and nest samples and distinguish P. araujoi from the grass/litter feeding Cornitermes cumulans. Our results also showed that diversity of gut bacteria were higher in P. araujoi and Silvestritermes euamignathus than in the grass/litter feeders (C. cumulans and Syntermes dirus), that could indicate an adaptation of the microbial community of polyphagous termites to the higher complexity of their diets.


Assuntos
Isópteros/microbiologia , Microbiota , Actinobacteria/isolamento & purificação , Animais , Ascomicetos/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Microbioma Gastrointestinal , Microbiota/genética , Tipagem Molecular , Poaceae , Solo
19.
J Biol Chem ; 291(45): 23734-23743, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27621314

RESUMO

Carbohydrate-binding modules (CBMs) are appended to glycoside hydrolases and can contribute to the degradation of complex recalcitrant substrates such as the plant cell wall. For application in bioethanol production, novel enzymes with high catalytic activity against recalcitrant lignocellulosic material are being explored and developed. In this work, we report the functional and structural study of CBM_E1, which was discovered through a metagenomics approach and is the founding member of a novel CBM family, CBM81. CBM_E1, which is linked to an endoglucanase, displayed affinity for mixed linked ß1,3-ß1,4-glucans, xyloglucan, Avicel, and cellooligosaccharides. The crystal structure of CBM_E1 in complex with cellopentaose displayed a canonical ß-sandwich fold comprising two ß-sheets. The planar ligand binding site, observed in a parallel orientation with the ß-strands, is a typical feature of type A CBMs, although the expected affinity for bacterial crystalline cellulose was not detected. Conversely, the binding to soluble glucans was enthalpically driven, which is typical of type B modules. These unique properties of CBM_E1 are at the interface between type A and type B CBMs.


Assuntos
Bactérias/enzimologia , Celulase/metabolismo , Metagenoma , Saccharum/microbiologia , Microbiologia do Solo , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Sítios de Ligação , Celulase/química , Celulase/genética , Celulose/metabolismo , Cristalografia por Raios X , Glucanos/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Oligossacarídeos/metabolismo , Conformação Proteica , Termodinâmica , Xilanos/metabolismo
20.
Mol Microbiol ; 102(4): 642-671, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27538790

RESUMO

The serine-threonine kinase TOR, the Target of Rapamycin, is an important regulator of nutrient, energy and stress signaling in eukaryotes. Sch9, a Ser/Thr kinase of AGC family (the cAMP-dependent PKA, cGMP- dependent protein kinase G and phospholipid-dependent protein kinase C family), is a substrate of TOR. Here, we characterized the fungal opportunistic pathogen Aspergillus fumigatus Sch9 homologue (SchA). The schA null mutant was sensitive to rapamycin, high concentrations of calcium, hyperosmotic stress and SchA was involved in iron metabolism. The ΔschA null mutant showed increased phosphorylation of SakA, the A. fumigatus Hog1 homologue. The schA null mutant has increased and decreased trehalose and glycerol accumulation, respectively, suggesting SchA performs different roles for glycerol and trehalose accumulation during osmotic stress. The schA was transcriptionally regulated by osmotic stress and this response was dependent on SakA and MpkC. The double ΔschA ΔsakA and ΔschA ΔmpkC mutants were more sensitive to osmotic stress than the corresponding parental strains. Transcriptomics and proteomics identified direct and indirect targets of SchA post-exposure to hyperosmotic stress. Finally, ΔschA was avirulent in a low dose murine infection model. Our results suggest there is a complex network of interactions amongst the A. fumigatus TOR, SakA and SchA pathways.


Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/patogenicidade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Aspergilose/microbiologia , Aspergillus fumigatus/metabolismo , Feminino , Proteínas Fúngicas/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos BALB C , Pressão Osmótica/fisiologia , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Esporos Fúngicos/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa