Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Am Chem Soc ; 145(5): 2733-2738, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36705935

RESUMO

We have discovered a protein with an amino acid composition exceptionally rich in glycine and cysteine residues in the giant virus mimivirus. This small 6 kDa protein is among the most abundant proteins in the icosahedral 0.75 µm viral particles; it has no predicted function but is probably essential for infection. The aerobically purified red-brownish protein overproduced inEscherichia coli contained both iron and inorganic sulfide. UV/vis, EPR, and Mössbauer studies revealed that the viral protein, coined GciS, accommodated two distinct Fe-S clusters: a diamagnetic S = 0 [2Fe-2S]2+ cluster and a paramagnetic S = 5/2 linear [3Fe-4S]1+ cluster, a geometry rarely stabilized in native proteins. Orthologs of mimivirus GciS were identified within all clades of Megavirinae, a Mimiviridae subfamily infecting Acanthamoeba, including the distantly related tupanviruses, and displayed the same spectroscopic features. Thus, these glycine/cysteine-rich proteins form a new family of viral Fe-S proteins sharing unique Fe-S cluster binding properties.


Assuntos
Vírus Gigantes , Proteínas Ferro-Enxofre , Proteínas Ferro-Enxofre/química , Vírus Gigantes/metabolismo , Cisteína/química , Glicina , Análise Espectral , Espectroscopia de Ressonância de Spin Eletrônica
2.
J Am Chem Soc ; 144(38): 17496-17515, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36121382

RESUMO

Iron-sulfur (Fe-S) clusters are prosthetic groups of proteins biosynthesized on scaffold proteins by highly conserved multi-protein machineries. Biosynthesis of Fe-S clusters into the ISCU scaffold protein is initiated by ferrous iron insertion, followed by sulfur acquisition, via a still elusive mechanism. Notably, whether iron initially binds to the ISCU cysteine-rich assembly site or to a cysteine-less auxiliary site via N/O ligands remains unclear. We show here by SEC, circular dichroism (CD), and Mössbauer spectroscopies that iron binds to the assembly site of the monomeric form of prokaryotic and eukaryotic ISCU proteins via either one or two cysteines, referred to the 1-Cys and 2-Cys forms, respectively. The latter predominated at pH 8.0 and correlated with the Fe-S cluster assembly activity, whereas the former increased at a more acidic pH, together with free iron, suggesting that it constitutes an intermediate of the iron insertion process. Iron not binding to the assembly site was non-specifically bound to the aggregated ISCU, ruling out the existence of a structurally defined auxiliary site in ISCU. Characterization of the 2-Cys form by site-directed mutagenesis, CD, NMR, X-ray absorption, Mössbauer, and electron paramagnetic resonance spectroscopies showed that the iron center is coordinated by four strictly conserved amino acids of the assembly site, Cys35, Asp37, Cys61, and His103, in a tetrahedral geometry. The sulfur receptor Cys104 was at a very close distance and apparently bound to the iron center when His103 was missing, which may enable iron-dependent sulfur acquisition. Altogether, these data provide the structural basis to elucidate the Fe-S cluster assembly process and establish that the initiation of Fe-S cluster biosynthesis by insertion of a ferrous iron in the assembly site of ISCU is a conserved mechanism.


Assuntos
Proteínas de Escherichia coli , Proteínas Ferro-Enxofre , Cisteína/química , Proteínas de Escherichia coli/química , Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Compostos de Sulfonilureia , Enxofre/metabolismo
3.
J Biol Inorg Chem ; 25(5): 827, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32472240

RESUMO

In the original article published, in the gy value (column) of the H2O/OH-species (row) of Table 2 was mistakenly given as "1.18" and the correct value is "2.18".

4.
J Biol Inorg Chem ; 25(4): 609-620, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32246282

RESUMO

Chlorite dismutase is a unique heme enzyme that catalyzes the conversion of chlorite to chloride and molecular oxygen. The enzyme is highly specific for chlorite but has been known to bind several anionic and neutral ligands to the heme iron. In a pH study, the enzyme changed color from red to green in acetate buffer pH 5.0. The cause of this color change was uncovered using UV-visible and EPR spectroscopy. Chlorite dismutase in the presence of acetate showed a change of the UV-visible spectrum: a redshift and hyperchromicity of the Soret band from 391 to 404 nm and a blueshift of the charge transfer band CT1 from 647 to 626 nm. Equilibrium binding titrations with acetate resulted in a dissociation constant of circa 20 mM at pH 5.0 and 5.8. EPR spectroscopy showed that the acetate bound form of the enzyme remained high spin S = 5/2, however with an apparent change of the rhombicity and line broadening of the spectrum. Mutagenesis of the proximal arginine Arg183 to alanine resulted in the loss of the ability to bind acetate. Acetate was discovered as a novel ligand to chlorite dismutase, with evidence of direct binding to the heme iron. The green color is caused by a blueshift of the CT1 band that is characteristic of the high spin ferric state of the enzyme. Any weak field ligand that binds directly to the heme center may show the red to green color change, as was indeed the case for fluoride.


Assuntos
Acetatos/química , Cor , Hemeproteínas/química , Oxirredutases/química , Acetatos/metabolismo , Sítios de Ligação , Hemeproteínas/isolamento & purificação , Hemeproteínas/metabolismo , Oxirredutases/metabolismo , Rhodocyclaceae/enzimologia
5.
Chembiochem ; 16(14): 2080-5, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26147723

RESUMO

Proton transfer across membranes and membrane proteins is a central process in biological systems. Zn(2+) ions are capable of binding to acidic residues, often found within such specific pathways, thereby leading to a blockage. Here we probed Zn(2+) inhibition of the proton-pumping NADH:ubiquinone oxidoreductase from Escherichia coli by means of electrochemically induced FTIR difference spectroscopy. Numerous conformational changes were identified including those that arise from the reorganization of the membrane arm upon electron transfer in the peripheral arm of the protein. Signals at very high wavenumbers (1781 and 1756 cm(-1)) point to the perturbation of acidic residues in a highly hydrophobic environment upon Zn(2+) binding. In variant D563N(L), which lacks part of the proton pumping activity (residue located on the horizontal amphipathic helix), the spectral signature of Zn(2+) binding is changed. Our data support a role for this residue in proton translocation.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Escherichia coli/enzimologia , Zinco/metabolismo , Cátions Bivalentes/metabolismo , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica , Prótons
6.
Methods Mol Biol ; 2353: 191-205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34292551

RESUMO

Cysteine-bound persulfides (Cys-SSH) in proteins are sulfur carrier intermediates in the synthesis of essential cofactors such as iron-sulfur clusters, molybdenum cofactor, vitamin (thiamine), and thionucleosides (thiolated tRNA). Protein-bound persulfides are also used for signaling purposes as a carrier of the "H2S" signal. Several methods have been developed to detect and quantify cysteine-bound persulfides in protein and monitor their exchange. The main challenge in developing these techniques is to discriminate persulfidated cysteine from cysteine and other cysteine modifications. It is also critical to develop ratiometric methods to quantify the level of persulfidation in the protein of interest. We describe here a ratiometric method to label and quantify protein-bound persulfides relying on alkylation and gel-shift assays. This method is based on the derivation of cysteine and persulfides with "heavy" alkylating agents, followed by specific cleavage of the sulfur-sulfur bond of the alkylated persulfide by a reducing agent and separation of the alkylated species by electrophoresis. A persulfide is thus revealed by the appearance of a species lacking one alkylation unit under reducing conditions. We call this alkylation-reduction band-shift (ARBS) assay. Moreover, the quantification of the bands corresponding to the persulfidated and non-persulfidated species in the same lane provides a ratiometric quantification allowing determination of the level of persulfidation of individual cysteine. Other cysteine modifications such as disulfides, sulfenic, sulfinic, sulfonic acids, nitrosothiols, and sulfenamides preclude alkylation. Thus, they may appear as false positives, but they are ruled out by the analysis under nonreducing conditions since these species do not behave as persulfides under these conditions.


Assuntos
Ensaio de Desvio de Mobilidade Eletroforética , Alquilação , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Cisteína/metabolismo , Dissulfetos , Proteínas , Sulfetos , Enxofre , Fatores de Tempo
7.
ACS Catal ; 11(23): 14533-14544, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34888122

RESUMO

The heme enzyme chlorite dismutase (Cld) catalyzes O-O bond formation as part of the conversion of the toxic chlorite (ClO2 -) to chloride (Cl-) and molecular oxygen (O2). Enzymatic O-O bond formation is rare in nature, and therefore, the reaction mechanism of Cld is of great interest. Microsecond timescale pre-steady-state kinetic experiments employing Cld from Azospira oryzae (AoCld), the natural substrate chlorite, and the model substrate peracetic acid (PAA) reveal the formation of distinct intermediates. AoCld forms a complex with PAA rapidly, which is cleaved heterolytically to yield Compound I, which is sequentially converted to Compound II. In the presence of chlorite, AoCld forms an initial intermediate with spectroscopic characteristics of a 6-coordinate high-spin ferric substrate adduct, which subsequently transforms at k obs = 2-5 × 104 s-1 to an intermediate 5-coordinated high-spin ferric species. Microsecond-timescale freeze-hyperquench experiments uncovered the presence of a transient low-spin ferric species and a triplet species attributed to two weakly coupled amino acid cation radicals. The intermediates of the chlorite reaction were not observed with the model substrate PAA. These findings demonstrate the nature of physiologically relevant catalytic intermediates and show that the commonly used model substrate may not behave as expected, which demands a revision of the currently proposed mechanism of Clds. The transient triplet-state biradical species that we designate as Compound T is, to the best of our knowledge, unique in heme enzymology. The results highlight electron paramagnetic resonance spectroscopic evidence for transient intermediate formation during the reaction of AoCld with its natural substrate chlorite. In the proposed mechanism, the heme iron remains ferric throughout the catalytic cycle, which may minimize the heme moiety's reorganization and thereby maximize the enzyme's catalytic efficiency.

8.
J Inorg Biochem ; 184: 42-49, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29679799

RESUMO

The study of the structure, function, folding and conformational transitions of cytochrome c is of great interest because this protein plays an important role in biological electron transport and apoptosis. The different native and non-native conformations have been studied extensively under equilibrium conditions at different pH values, however, kinetic studies are rare because they require technically challenging rapid mixing and spectroscopic monitoring techniques. Here we present the refolding kinetics of acid denatured cytochrome c using the pH jump technique from pH 2 to pH 4.7 in combination with a new ultrafast continuous flow mixing device that allows time resolved measurements to the microsecond time scale. Our results show that the initial refolding of denatured oxidized cytochrome c occurs very rapidly with a time constant τ = 10 µs, and is followed by discrete refolding steps with time constants of 56 and 208 µs. Electron paramagnetic resonance analysis of the different intermediates, obtained by microsecond freeze hyper quenching showed that the first two intermediates are predominantly high spin, and the third intermediate is the low spin species with complete His/Met coordination. The initial rapid phase is characterized by the formation of high spin species distinct from the completely unfolded state. We interpret this as the formation of a five coordinate species with His18 as the axial ligand or six coordinate with water and His18 as the axial ligands.


Assuntos
Citocromos c/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Concentração de Íons de Hidrogênio , Cinética , Conformação Proteica , Dobramento de Proteína
9.
Methods Mol Biol ; 1635: 195-203, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28755370

RESUMO

Specialized infrared spectroscopic techniques have been developed that allow studying the secondary structure of membrane proteins and the influence of crucial parameters like lipid content and detergent. Here, we focus on an ATR-FTIR spectroscopic study of Af-Amt1 and the influence of LDAO/glycerol on its structural integrity. Our results clearly indicate that infrared spectroscopy can be used to identify the adapted sample conditions.


Assuntos
Archaeoglobus/metabolismo , Proteínas de Membrana/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Proteínas Arqueais/química , Archaeoglobus/química , Detergentes/química , Modelos Moleculares , Estrutura Secundária de Proteína
10.
J Phys Chem B ; 120(17): 4047-52, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27092567

RESUMO

Far infrared spectra of complex molecular structures like lipid membranes or proteins show large and broad continuum modes that include contributions of the internal hydrogen bonding of the assembled structures. Here we corroborate the pH triggered structural rearrangement in pH-sensitive liposomes with a clear shift of the far-infrared mode from 170 to 159 cm(-1). This spectral change was accompanied by the broadening of the hydrogen bonding signature by about 25 cm(-1) and correlates with the well-known hydrogen bonding dependent shifts of the ν(PO2(-))(as) vibration of the lipid headgroup in the mid infrared and with further shifts of functional group vibrations. Far infrared spectroscopy is thus a useful tool for the investigation of conformational changes in large molecular structures.


Assuntos
Lipossomos/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Estrutura Molecular , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa