Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Am Chem Soc ; 145(4): 2430-2438, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661343

RESUMO

Electrically conductive coordination polymers and metal-organic frameworks are attractive emerging electroactive materials for (opto-)electronics. However, developing semiconducting coordination polymers with high charge carrier mobility for devices remains a major challenge, urgently requiring the rational design of ligands and topological networks with desired electronic structures. Herein, we demonstrate a strategy for synthesizing high-mobility semiconducting conjugated coordination polymers (c-CPs) utilizing novel conjugated ligands with D2h symmetry, namely, "4 + 2" phenyl ligands. Compared with the conventional phenyl ligands with C6h symmetry, the reduced symmetry of the "4 + 2" ligands leads to anisotropic coordination in the formation of c-CPs. Consequently, we successfully achieve a single-crystalline three-dimensional (3D) c-CP Cu4DHTTB (DHTTB = 2,5-dihydroxy-1,3,4,6-tetrathiolbenzene), containing orthogonal ribbon-like π-d conjugated chains rather than 2D conjugated layers. DFT calculation suggests that the resulting Cu4DHTTB exhibits a small band gap (∼0.2 eV), strongly dispersive energy bands near the Fermi level with a low electron-hole reduced effective mass (∼0.2m0*). Furthermore, the four-probe method reveals a semiconducting behavior with a decent conductivity of 0.2 S/cm. Thermopower measurement suggests that it is a p-type semiconductor. Ultrafast terahertz photoconductivity measurements confirm Cu4DHTTB's semiconducting nature and demonstrate the Drude-type transport with high charge carrier mobilities up to 88 ± 15 cm2 V-1 s-1, outperforming the conductive 3D coordination polymers reported till date. This molecular design strategy for constructing high-mobility semiconducting c-CPs lays the foundation for achieving high-performance c-CP-based (opto-)electronics.

2.
Angew Chem Int Ed Engl ; 60(34): 18666-18672, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34032341

RESUMO

2D conjugated metal-organic frameworks (2D c-MOFs) are emerging as electroactive materials for chemiresistive sensors, but selective sensing with fast response/recovery is a challenge. Phthalocyanine-based Ni2 [MPc(NH)8 ] 2D c-MOF films are presented as active layers for polarity-selective chemiresisitors toward water and volatile organic compounds (VOCs). Surface-hydrophobic modification by grafting aliphatic alkyl chains on 2D c-MOF films decreases diffused analytes into the MOF backbone, resulting in a considerably accelerated recovery progress (from ca. 50 to ca. 10 s) during humidity sensing. Toward VOCs, the sensors deliver a polarity-selective response among alcohols but no signal for low-polarity aprotic hydrocarbons. The octadecyltrimethoxysilane-modified Ni2 [MPc(NH)8 ] based sensor displays high-performance methanol sensing with fast response (36 s)/recovery (13 s) and a detection limit as low as 10 ppm, surpassing reported room-temperature chemiresistors.

4.
Phys Chem Chem Phys ; 17(16): 10687-98, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25812167

RESUMO

We investigate computationally a series of intramolecular frustrated Lewis pairs (FLPs), with the general formula Mes2PCHRCH2B(C6F5)2, that are known from the literature to either activate molecular hydrogen (FLPs with R = H (1) or Me (4)), or remain inert (FLPs with R = Ph (2) or SiMe3 (3)). The prototypical system Mes2PCH2CH2B(C6F5)2 (1) has been described in the literature (Grimme et al., Angew. Chem., Int. Ed., 2010; Rokob et al., J. Am. Chem. Soc., 2013) as an intramolecular reactant that triggers the reaction with H2 in a bimolecular concerted fashion. In the current study, we show that the concept of intramolecular H2 activation by linked FLPs is not able to explain the inertness of the derivative compounds 2 and 3 towards H2. To cope with this, we propose an alternative intermolecular mechanism for the investigated reaction, assuming stacking of two open-chain FLP conformers, and formation of a dimeric reactant with two Lewis acid­base domains, that can split up to two hydrogen molecules. Using quantum-chemical methods, we compute the reaction profiles describing these alternative mechanisms, and compare the derived predictions with earlier reported experimental results. We show that only the concept of intermolecular H2 activation could explain both the activity of the FLPs having small substituents in the bridging molecular region, and the inertness of the FLPs with a bulkier substitution, in a consistent way. Importantly, the intermolecular H2 activation driven by intramolecular FLPs indicates the key role of steric factors and noncovalent interactions for the design of metal-free systems that can efficiently split H2, and possibly serve as metal-free hydrogenation catalysts.

5.
Chemphyschem ; 13(8): 2025-9, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22517762

RESUMO

As indicated by nearly perfect XRD data, but challenged by a two-signal IR spectrum of CO guest molecules, it is confirmed by computer simulations and XPS experiments that the most defect-free SURMOFs contain about 4% defective Cu sites.


Assuntos
Cobre/química , Monóxido de Carbono/química , Dimerização , Espectrofotometria Infravermelho , Ácidos Tricarboxílicos/química , Difração de Raios X
6.
Phys Chem Chem Phys ; 14(17): 5879-90, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22353996

RESUMO

"Reverse" spillover of hydrogen from hydroxyl groups of the support onto supported transition metal clusters, forming multiply hydrogenated metal species, is an essential aspect of various catalytic systems which comprise small, highly active transition metal particles on a support with a high surface area. We review and analyze the results of our computational model studies related to reverse hydrogen spillover, interpreting available structural and spectral data for the supported species and examining the relationship between metal-support and metal-hydrogen interactions. On the examples of small clusters of late transition metals, adsorbed in zeolite cavities, we showed with computational model studies that reverse spillover of hydrogen is energetically favorable for late transition metals, except for Au. This preference is crucial for the chemical reactivity of such bifunctional catalytic systems because both functions, of metal species and of acidic sites, are strongly modified, in some cases even suppressed - due to partial oxidation of the metal cluster and the conversion of protons from acidic hydroxyl groups to hydride ligands of the metal moiety. Modeling multiple hydrogen adsorption on metal clusters allowed us to quantify how (i) the support affects the adsorption capacity of the clusters and (ii) structure and oxidation state of the metal moiety changes upon adsorption. In all models of neutral systems we found that the metal atoms are partially positively charged, compensated by a negative charge of the adsorbed hydrogen ligands and of the support. In a case study we demonstrated with calculated thermodynamic parameters how to predict the average hydrogen coverage of the transition metal cluster at a given temperature and hydrogen pressure.

7.
ACS Omega ; 7(27): 23234-23244, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35847262

RESUMO

The interactions between Na+ or Mg2+ ions with different parts of single-stranded RNA molecules, namely, the oxygen atoms from the phosphate groups or the guanine base, in water solution have been studied using first-principles molecular dynamics. Sodium ions were found to be much more mobile than Mg2+ ions and readily underwent transitions between a state directly bonded to RNA oxygen atoms and a completely solvated state. The inner solvation shell of Na+ ions fluctuated stochastically at a femtosecond timescale coordinating on average 5 oxygen atoms for bonded Na+ ions and 5.5 oxygen atoms for solvated Na+ ions. In contrast, the inner solvation shell of Mg2+ ions was stable in both RNA-bonded and completely solvated states. In both cases, Mg2+ ions coordinated 6 oxygen atoms from the inner solvation shell. Consistent with their stable solvation shells, Mg2+ ions were more effective than Na+ ions in stabilizing the RNA backbone conformation. The exclusion zones between the first and second solvation shells, solvation shell widths, and angles for binding to carbonyl oxygen of guanine for solvated Na+ or Mg2+ ions exhibited a number of quantitative differences when compared with RNA crystallographic data. The presented results support the distinct capacity of Mg2+ ions to support the RNA structure not only in the crystal phase but also in the dynamic water environment both on the side of the phosphate moiety and on the side of the nucleobase.

8.
J Phys Chem A ; 115(48): 14054-68, 2011 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21992409

RESUMO

Various hydrogen-bonded complexes of methanol with different proton accepting and proton donating molecules containing Cl, F, NH(2), OH, OR, and COOH functional groups have been modeled using DFT with hybrid B3LYP and M05-2X functionals. The latter functional was found to provide more accurate estimates of the structural and thermodynamic parameters of the complexes of halides, amines, and alcohols. The characteristics of these complexes are influenced not only by the principle hydrogen bond of the methanol OH with the proton acceptor heteroatom, but also by additional hydrogen bonds of a C-H moiety with methanol oxygen as a proton acceptor. The contribution of the former hydrogen bond in the total binding enthalpy increases in the order chlorides < fluorides < alcohols < amines, while the contribution of the second type of hydrogen bond increases in the reverse order. A general correlation was found between the binding enthalpy of the complex and the electrostatic potential at the hydrogen center participating in the formation of the hydrogen bond. The calculated binding enthalpies of different complexes were used to clarify which functional groups can potentially form a hydrogen bond to the 2'-OH hydroxyl group in ribose, which is strong enough to block it from participation in the intramolecular catalytic activation of the peptide bond synthesis. Such blocking could result in inhibition of the protein biosynthesis in the living cell if the corresponding group is delivered as a part of a drug molecule in the vicinity of the active site in the ribosome. According to our results, such activity can be accomplished by secondary or tertiary amines, alkoxy groups, deprotonated carboxyl groups, and aliphatic fluorides, but not by the other modeled functional groups.


Assuntos
Aminas/química , Química Orgânica , Halogênios/química , Metanol/química , Modelos Moleculares , Álcoois/química , Ligação de Hidrogênio , Radical Hidroxila/química , Estrutura Molecular , Prótons , Teoria Quântica , Termodinâmica
9.
Eur J Pharm Biopharm ; 142: 460-472, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31336182

RESUMO

ZSM-5/KIT-6 and ZSM-5/SBA-15 nanoparticles were synthesized and further modified by a post-synthesis method with (CH2)3SO3H and (CH2)3NHCO(CH2)2COOH groups to optimize their drug loading and release kinetic profiles. The verapamil cargo drug was loaded by incipient wetness impregnation both on the parent and modified nanoporous supports. Nanocarriers were then coated with a three-layer polymeric shell composed of chitosan-k-carrageenan-chitosan with grafted polysulfobetaine chains. The parent and drug loaded formulations were characterized by powder XRD, N2 physisorption, thermal analysis, AFM, DLS, TEM, ATR-FT-IR and solid state NMR spectroscopies. Loading of verapamil on such nanoporous carriers and their subsequent polymer coating resulted in a prolonged in vitro release of the drug molecules. Quantum-chemical calculations were performed to investigate the strength of the interaction between the specific functional groups of the drug molecule and (CH2)3SO3H and CH2)3NHCO(CH2)2COOH groups of the drug carrier. Furthermore, the ability of the developed nanocomposites to positively modulate the intracellular internalization and thereby augment the antitumor activity of the p-gp substrate drug doxorubicin was investigated in a comparative manner vs. free drug in a panel of MDR positive (HL-60/Dox, HT-29) and MDR negative (HL-60) human cancer cell lines using the Chou-Talalay method.


Assuntos
Antineoplásicos/química , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Nanocompostos/química , Polímeros/química , Dióxido de Silício/química , Verapamil/química , Linhagem Celular Tumoral , Quitosana/química , Doxorrubicina/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Células HL-60 , Células HT29 , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/química , Porosidade
10.
J Phys Chem A ; 112(37): 8523-8, 2008 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-18714970

RESUMO

We report a computational investigation of CO adsorption on small nickel clusters that contain single impurity atoms H, C, or O. At bare Ni 4 and clusters with H or O impurity, the most stable coordination of the probe molecule is on top of a Ni atom which interacts with the impurity. The CNi 4 cluster is an exception where 3-fold coordination of CO was determined to be more stable than that on top, however, by 4 kJ/mol only. Our results suggest that the heteroatoms X (X = H, C, O) affect only weakly the reactivity of the cluster with respect to CO; the binding energy of CO in the most stable complexes (CO)XNi 4 increases at most by 10% compared to the value for bare Ni 4, 194 kJ/mol. The impurity induces a small decrease of the CO infrared frequency shift for on-top coordinated CO, compared to Ni 4, because of partial oxidation of the metal moiety. A notable difference is predicted for clusters that contain a C impurity because of the different preferred coordination mode which results in a strong CO frequency red shift of approximately 300 cm (-1). The calculated characteristic CO frequency shifts may be helpful in identifying experimentally clusters with impurity atoms.

11.
J Phys Chem Lett ; 6(6): 986-92, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-26262857

RESUMO

High-energy irradiation of protic solvents can transiently introduce excess electrons that are implicated in a diverse range of reductive processes. Here we report the evolution of electron solvation in water and in alcohols following photodetachment from aqueous hydroxide or the corresponding alkoxides studied by two- and three-pulse femtosecond spectroscopy and ab initio molecular dynamic simulations. The experiments reveal an ultrafast recombination channel of the excess electrons. Through the calculations this channel emerges as an H-atom transfer process to the hydroxyl or alkoxy radical species from neighboring solvent molecules, which are activated as the presolvated electron occupies their antibonding orbitals. The initially low activation barrier in the early stages of electron solvation was found to increase (from 12 to 44 kJ/mol in water) as full solvation proceeded.

12.
Chem Commun (Camb) ; 51(26): 5668-71, 2015 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-25714684

RESUMO

We show that the first stages of interaction between NO and reduced ceria comprise the formation of azides, N3(-), with simultaneous oxidation of Ce(3+) to Ce(4+). This finding imposes revision on some current views of catalytic NO conversion and may contribute to design of new deNOx materials and processes.


Assuntos
Azidas/síntese química , Óxido Nítrico/química , Azidas/química , Catálise , Cério/química , Radicais Livres/química , Oxirredução , Teoria Quântica
13.
J Phys Chem A ; 111(11): 2067-76, 2007 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-17388298

RESUMO

With a gradient-corrected density functional method, we have studied computationally the influence of single impurity atoms on the structure, electronic, and magnetic properties of Ni5 clusters. The square-pyramidal isomer of bare Ni5 with six unpaired electrons was calculated 23 kJ/mol more stable than the trigonal bipyramid in its lowest-energy electronic configuration with four unpaired electrons. In a previous study on the cluster Ni4, we had obtained only one stable isomer with an O or an H impurity, but we located six minima for ONi5 and five minima for HNi5. In the most stable structures of HNi5, the H atom bridges a Ni-Ni edge at the base or the side of the square pyramid, similarly to the coordination of an H atom at the tetrahedral cluster Ni4. The most stable ONi5 isomers exhibit a trigonal bipyramidal structure of the Ni5 moiety, with the impurity coordinated at a facet, (micro3-O)Ni5, or at an apex edge, (micro-O)Ni5. We located four stable structures for a C impurity at a Ni5 cluster. As for CNi4, the most stable structure of the corresponding Ni5 complex comprises a four-coordinated C atom, (micro4-C)Ni5, and can be considered as insertion of the impurity into a Ni-Ni bond of the bare cluster. All structures with C and five with O impurity have four unpaired electrons, while the number of unpaired electrons in the clusters HNi5 varies between 3 and 7. As a rough trend, the ionization potentials and electron affinities of the clusters with impurity atoms decrease with the coordination number of the impurity. However, the position of the impurity and the shape of the metal moiety also affect the results. Coordination of an impurity atom leads to a partial oxidation of the metal atoms.

14.
Phys Chem Chem Phys ; 8(11): 1282-91, 2006 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-16633608

RESUMO

Using a gradient-corrected density functional method, we studied computationally how single impurity atoms affect the structure and the properties of a Ni4 cluster. H and O atoms coordinate at a Ni-Ni bond, inducing small changes to the structure of bare Ni4 which is essentially a tetrahedron. For a C impurity, we found three stable structures at a Ni4 cluster. In the most stable geometry, the carbon atom cleaves a Ni-Ni bond of Ni4, binding to all Ni atoms. Inclusion of the impurity atom leads to a partial oxidation of the metal atoms and, in the most stable structures, reduces the spin polarization of the cluster compared to bare Ni4. An H impurity interacts mainly with the Ni 4s orbitals, whereas the Ni 3d orbitals participate strongly in the bonding with O and C impurity atoms. For these impurity atoms, Ni 3d contributions dominate the character of the HOMO of the ligated cluster, in contrast to the HOMO of bare Ni4 where Ni 4s orbitals prevail. We also discuss a simple model which relates the effect of a H impurity on the magnetic state of metal clusters to the spin character (minority or majority) of the LUMO or HOMO of the bare metal cluster.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa