Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(10): 4706-4715, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30770447

RESUMO

Zn2+, Mg2+, and Ca2+ are essential minerals required for a plethora of metabolic processes and signaling pathways. Different categories of cation-selective channels and transporters are therefore required to tightly control the cellular levels of individual metals in a cell-specific manner. However, the mechanisms responsible for the organismal balance of these essential minerals are poorly understood. Herein, we identify a central and indispensable role of the channel-kinase TRPM7 for organismal mineral homeostasis. The function of TRPM7 was assessed by single-channel analysis of TRPM7, phenotyping of TRPM7-deficient cells in conjunction with metabolic profiling of mice carrying kidney- and intestine-restricted null mutations in Trpm7 and animals with a global "kinase-dead" point mutation in the gene. The TRPM7 channel reconstituted in lipid bilayers displayed a similar permeability to Zn2+ and Mg2+ Consistently, we found that endogenous TRPM7 regulates the total content of Zn2+ and Mg2+ in cultured cells. Unexpectedly, genetic inactivation of intestinal rather than kidney TRPM7 caused profound deficiencies specifically of Zn2+, Mg2+, and Ca2+ at the organismal level, a scenario incompatible with early postnatal growth and survival. In contrast, global ablation of TRPM7 kinase activity did not affect mineral homeostasis, reinforcing the importance of the channel activity of TRPM7. Finally, dietary Zn2+ and Mg2+ fortifications significantly extended the survival of offspring lacking intestinal TRPM7. Hence, the organismal balance of divalent cations critically relies on one common gatekeeper, the intestinal TRPM7 channel.


Assuntos
Mucosa Intestinal/metabolismo , Minerais/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Cálcio/metabolismo , Técnicas de Inativação de Genes , Homeostase , Rim/metabolismo , Magnésio/metabolismo , Camundongos , Camundongos Knockout , Canais de Cátion TRPM/genética , Zinco/metabolismo
2.
Nanotechnology ; 31(7): 075502, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31652425

RESUMO

We present a simulation framework for computing the probability that a single molecule reaches the recognition element in a nanopore sensor. The model consists of the Langevin equation for the diffusive motion of small particles driven by external forces and the Poisson-Nernst-Planck-Stokes equations to compute these forces. The model is applied to examine DNA exo-sequencing in α-hemolysin, whose practicability depends on whether isolated DNA monomers reliably migrate into the channel in their correct order. We find that, at moderate voltage, migration fails in the majority of trials if the exonuclease which releases monomers is located farther than 1 nm above the pore entry. However, by tuning the pore to have a higher surface charge, applying a high voltage of 1 V and ensuring the exonuclease stays close to the channel, success rates of over 95% can be achieved.


Assuntos
DNA/genética , Nanotecnologia/métodos , Difusão , Proteínas Hemolisinas/genética , Modelos Moleculares , Movimento (Física) , Nanoporos , Porosidade , Análise de Sequência de DNA/métodos
3.
ACS Nano ; 15(6): 9900-9912, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34096722

RESUMO

The transport of molecules through nanoscale confined space is relevant in biology, biosensing, and industrial filtration. Microscopically modeling transport through nanopores is required for a fundamental understanding and guiding engineering, but the short duration and low replica number of existing simulation approaches limit statistically relevant insight. Here we explore protein transport in nanopores with a high-throughput computational method that realistically simulates hundreds of up to seconds-long protein trajectories by combining Brownian dynamics and continuum simulation and integrating both driving forces of electroosmosis and electrophoresis. Ionic current traces are computed to enable experimental comparison. By examining three biological and synthetic nanopores, our study answers questions about the kinetics and mechanism of protein transport and additionally reveals insight that is inaccessible from experiments yet relevant for pore design. The discovery of extremely frequent unhindered passage can guide the improvement of biosensor pores to enhance desired biomolecular recognition by pore-tethered receptors. Similarly, experimentally invisible nontarget adsorption to pore walls highlights how to improve recently developed DNA nanopores. Our work can be expanded to pressure-driven flow to model industrial nanofiltration processes.


Assuntos
Nanoporos , Eletro-Osmose , Transporte de Íons , Simulação de Dinâmica Molecular , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa