Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 588(7836): 112-117, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33057193

RESUMO

Fluid intake is an essential innate behaviour that is mainly caused by two distinct types of thirst1-3. Increased blood osmolality induces osmotic thirst that drives animals to consume pure water. Conversely, the loss of body fluid induces hypovolaemic thirst, in which animals seek both water and minerals (salts) to recover blood volume. Circumventricular organs in the lamina terminalis are critical sites for sensing both types of thirst-inducing stimulus4-6. However, how different thirst modalities are encoded in the brain remains unknown. Here we employed stimulus-to-cell-type mapping using single-cell RNA sequencing to identify the cellular substrates that underlie distinct types of thirst. These studies revealed diverse types of excitatory and inhibitory neuron in each circumventricular organ structure. We show that unique combinations of these neuron types are activated under osmotic and hypovolaemic stresses. These results elucidate the cellular logic that underlies distinct thirst modalities. Furthermore, optogenetic gain of function in thirst-modality-specific cell types recapitulated water-specific and non-specific fluid appetite caused by the two distinct dipsogenic stimuli. Together, these results show that thirst is a multimodal physiological state, and that different thirst states are mediated by specific neuron types in the mammalian brain.


Assuntos
Neurônios/classificação , Neurônios/fisiologia , Sede/fisiologia , Animais , Sequência de Bases , Ingestão de Líquidos/fisiologia , Feminino , Hipovolemia/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Organum Vasculosum/citologia , Organum Vasculosum/fisiologia , Pressão Osmótica , Análise de Célula Única , Órgão Subfornical/citologia , Órgão Subfornical/fisiologia , Privação de Água
2.
PLoS Biol ; 17(2): e3000153, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30807574

RESUMO

The transcriptional mechanisms driving lineage specification during development are still largely unknown, as the interplay of multiple transcription factors makes it difficult to dissect these molecular events. Using a cell-based differentiation platform to probe transcription function, we investigated the role of the key paraxial mesoderm and skeletal myogenic commitment factors-mesogenin 1 (Msgn1), T-box 6 (Tbx6), forkhead box C1 (Foxc1), paired box 3 (Pax3), Paraxis, mesenchyme homeobox 1 (Meox1), sine oculis-related homeobox 1 (Six1), and myogenic factor 5 (Myf5)-in paraxial mesoderm and skeletal myogenesis. From this study, we define a genetic hierarchy, with Pax3 emerging as the gatekeeper between the presomitic mesoderm and the myogenic lineage. By assaying chromatin accessibility, genomic binding and transcription profiling in mesodermal cells from mouse and human Pax3-induced embryonic stem cells and Pax3-null embryonic day (E)9.5 mouse embryos, we identified conserved Pax3 functions in the activation of the skeletal myogenic lineage through modulation of Hedgehog, Notch, and bone morphogenetic protein (BMP) signaling pathways. In addition, we demonstrate that Pax3 molecular function involves chromatin remodeling of its bound elements through an increase in chromatin accessibility and cooperation with sine oculis-related homeobox 4 (Six4) and TEA domain family member 2 (Tead2) factors. To our knowledge, these data provide the first integrated analysis of Pax3 function, demonstrating its ability to remodel chromatin in mesodermal cells from developing embryos and proving a mechanistic footing for the transcriptional hierarchy driving myogenesis.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Homeodomínio/genética , Mesoderma/metabolismo , Células Musculares/metabolismo , Desenvolvimento Muscular/genética , Fator de Transcrição PAX3/genética , Transativadores/genética , Fatores de Transcrição/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Humanos , Mesoderma/citologia , Mesoderma/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Células Musculares/citologia , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Fator Regulador Miogênico 5/genética , Fator Regulador Miogênico 5/metabolismo , Fator de Transcrição PAX3/metabolismo , Transdução de Sinais , Proteínas com Domínio T , Fatores de Transcrição de Domínio TEA , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
3.
Proc Natl Acad Sci U S A ; 114(1): 101-106, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27986952

RESUMO

To define a complete catalog of the genes that are activated during mouse sclerotome formation, we sequenced RNA from embryonic mouse tissue directed to form sclerotome in culture. In addition to well-known early markers of sclerotome, such as Pax1, Pax9, and the Bapx2/Nkx3-2 homolog Nkx3-1, the long-noncoding RNA PEAT (Pax1 enhancer antisense transcript) was induced in sclerotome-directed samples. Strikingly, PEAT is located just upstream of the Pax1 gene. Using CRISPR/Cas9, we generated a mouse line bearing a complete deletion of the PEAT-transcribed unit. RNA-seq on PEAT mutant embryos showed that loss of PEAT modestly increases bone morphogenetic protein target gene expression and also elevates the expression of a large subset of ribosomal protein mRNAs.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Fatores de Transcrição Box Pareados/genética , RNA Longo não Codificante/genética , RNA Ribossômico/biossíntese , Proteínas Ribossômicas/biossíntese , Animais , Proteínas Morfogenéticas Ósseas/biossíntese , Sistemas CRISPR-Cas/genética , Mesoderma/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição Box Pareados/biossíntese , Proteínas Ribossômicas/genética , Deleção de Sequência/genética
4.
Development ; 138(5): 1005-14, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21303853

RESUMO

Inductive signals from adjacent tissues initiate differentiation within the somite. In this study, we used mouse embryos mutant for the BMP antagonists noggin (Nog) and gremlin 1 (Grem1) to characterize the effects of BMP signaling on the specification of the sclerotome. We confirmed reduction of Pax1 and Pax9 expression in Nog mutants, but found that Nog;Grem1 double mutants completely fail to initiate sclerotome development. Furthermore, Nog mutants that also lack one allele of Grem1 exhibit a dramatic reduction in axial skeleton relative to animals mutant for Nog alone. By contrast, Pax3, Myf5 and Lbx1 expression indicates that dermomyotome induction occurs in Nog;Grem1 double mutants. Neither conditional Bmpr1a mutation nor treatment with the BMP type I receptor inhibitor dorsomorphin expands sclerotome marker expression, suggesting that BMP antagonists do not have an instructive function in sclerotome specification. Instead, we hypothesize that Nog- and Grem1-mediated inhibition of BMP is permissive for hedgehog (Hh) signal-mediated sclerotome specification. In support of this model, we found that culturing Nog;Grem1 double-mutant embryos with dorsomorphin restores sclerotome, whereas Pax1 expression in smoothened (Smo) mutants is not rescued, suggesting that inhibition of BMP is insufficient to induce sclerotome in the absence of Hh signaling. Confirming the dominant inhibitory effect of BMP signaling, Pax1 expression cannot be rescued in Nog;Grem1 double mutants by forced activation of Smo. We conclude that Nog and Grem1 cooperate to maintain a BMP signaling-free zone that is a crucial prerequisite for Hh-mediated sclerotome induction.


Assuntos
Proteínas de Transporte/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Esqueleto , Somitos/embriologia , Animais , Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Embrião de Mamíferos , Proteínas Hedgehog/metabolismo , Camundongos , Camundongos Mutantes , Transdução de Sinais
5.
bioRxiv ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38895403

RESUMO

Neurogliaform cells are a distinct type of GABAergic cortical interneurons known for their "volume transmission" output property. However, their activity and function within cortical circuits remain unclear. Here, we developed two genetic tools to target these neurons and examine their function in the primary visual cortex. We found that the spontaneous activity of neurogliaform cells positively correlated with locomotion. Silencing these neurons increased spontaneous activity during locomotion and impaired visual responses in L2/3 pyramidal neurons. Furthermore, the contrast-dependent visual response of neurogliaform cells varies with their laminar location and is constrained by their morphology and input connectivity. These findings demonstrate the importance of neurogliaform cells in regulating cortical behavioral state-dependent spontaneous activity and indicate that their functional engagement during visual stimuli is influenced by their laminar positioning and connectivity.

6.
bioRxiv ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38915722

RESUMO

The mammalian cortex is comprised of cells with different morphological, physiological, and molecular properties that can be classified according to shared properties into cell types. Defining the contribution of each cell type to the computational and cognitive processes that are guided by the cortex is essential for understanding its function in health and disease. We use transcriptomic and epigenomic cortical cell type taxonomies from mice and humans to define marker genes and enhancers, and to build genetic tools for cortical cell types. Here, we present a large toolkit for selective targeting of cortical populations, including mouse transgenic lines and recombinant adeno-associated virus (AAV) vectors containing genomic enhancers. We report evaluation of fifteen new transgenic driver lines and over 680 different enhancer AAVs covering all major subclasses of cortical cells, with many achieving a high degree of specificity, comparable with existing transgenic lines. We find that the transgenic lines based on marker genes can provide exceptional specificity and completeness of cell type labeling, but frequently require generation of a triple-transgenic cross for best usability/specificity. On the other hand, enhancer AAVs are easy to screen and use, and can be easily modified to express diverse cargo, such as recombinases. However, their use depends on many factors, such as viral titer and route of administration. The tools reported here as well as the scaled process of tool creation provide an unprecedented resource that should enable diverse experimental strategies towards understanding mammalian cortex and brain function.

7.
Neuron ; 111(17): 2675-2692.e9, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37390821

RESUMO

The cardinal classes are a useful simplification of cortical interneuron diversity, but such broad subgroupings gloss over the molecular, morphological, and circuit specificity of interneuron subtypes, most notably among the somatostatin interneuron class. Although there is evidence that this diversity is functionally relevant, the circuit implications of this diversity are unknown. To address this knowledge gap, we designed a series of genetic strategies to target the breadth of somatostatin interneuron subtypes and found that each subtype possesses a unique laminar organization and stereotyped axonal projection pattern. Using these strategies, we examined the afferent and efferent connectivity of three subtypes (two Martinotti and one non-Martinotti) and demonstrated that they possess selective connectivity with intratelecephalic or pyramidal tract neurons. Even when two subtypes targeted the same pyramidal cell type, their synaptic targeting proved selective for particular dendritic compartments. We thus provide evidence that subtypes of somatostatin interneurons form cell-type-specific cortical circuits.


Assuntos
Interneurônios , Neurônios , Interneurônios/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Axônios/metabolismo , Somatostatina/metabolismo , Parvalbuminas/metabolismo
8.
Cell Rep ; 35(6): 109123, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979604

RESUMO

Dopaminergic projections exert widespread influence over multiple brain regions and modulate various behaviors including movement, reward learning, and motivation. It is increasingly appreciated that dopamine neurons are heterogeneous in their gene expression, circuitry, physiology, and function. Current approaches to target dopamine neurons are largely based on single gene drivers, which either label all dopamine neurons or mark a subset but concurrently label non-dopaminergic neurons. Here, we establish a mouse line with Flpo recombinase expressed from the endogenous Slc6a3 (dopamine active transporter [DAT]) locus. DAT-P2A-Flpo mice can be used together with Cre-expressing mouse lines to efficiently and selectively label dopaminergic subpopulations using Cre/Flp-dependent intersectional strategies. We demonstrate the utility of this approach by generating DAT-P2A-Flpo;NEX-Cre mice that specifically label Neurod6-expressing dopamine neurons, which project to the nucleus accumbens medial shell. DAT-P2A-Flpo mice add to a growing toolbox of genetic resources that will help parse the diverse functions mediated by dopaminergic circuits.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos
9.
Appl Biochem Biotechnol ; 129-132: 959-68, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16915704

RESUMO

Intensive poultry production generates over 100,000 t of litter annually in West Virginia and 9 x 10(6) t nationwide. Current available technological alternatives based on thermophilic anaerobic digestion for residuals treatment are diverse. A modification of the typical continuous stirred tank reactor is a promising process being relatively stable and owing to its capability to manage considerable amounts of residuals at low operational cost. A 40-m3 pilot plant digester was used for performance evaluation considering energy input and methane production. Results suggest some changes to the pilot plant configuration are necessary to reduce power consumption although maximizing biodigester performance.


Assuntos
Archaea/fisiologia , Bactérias Anaeróbias/fisiologia , Reatores Biológicos/microbiologia , Transferência de Energia/fisiologia , Esterco/microbiologia , Metano/metabolismo , Esgotos/microbiologia , Modelos Biológicos , Projetos Piloto
10.
Mech Dev ; 131: 78-85, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24514266

RESUMO

When compared to single mutants for Follistatin or Noggin, we find that double mutants display a dramatic further reduction in trunk cartilage formation, particularly in the vertebral bodies and proximal ribs. Consistent with these observations, expression of the early sclerotome markers Pax1 and Uncx is diminished in Noggin;Follistatin compound mutants. In contrast, Sim1 expression expands medially in double mutants. As the onset of Follistatin expression coincides with sclerotome specification, we argue that the effect of Follistatin occurs after sclerotome induction. We hypothesize that Follistatin aids in maintaining proper somite size, and consequently sclerotome progenitor numbers, by preventing paraxial mesoderm from adopting an intermediate/lateral plate mesodermal fate in the Noggin-deficient state.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Proteínas de Transporte/genética , Cartilagem/crescimento & desenvolvimento , Folistatina/genética , Proteínas Repressoras/biossíntese , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Feminino , Folistatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Mutação , Proteínas Repressoras/genética , Somitos/crescimento & desenvolvimento , Somitos/metabolismo , Coluna Vertebral/crescimento & desenvolvimento , Coluna Vertebral/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa