Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nat Mater ; 22(12): 1548-1555, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37723337

RESUMO

Aerophilic surfaces immersed underwater trap films of air known as plastrons. Plastrons have typically been considered impractical for underwater engineering applications due to their metastable performance. Here, we describe aerophilic titanium alloy (Ti) surfaces with extended plastron lifetimes that are conserved for months underwater. Long-term stability is achieved by the formation of highly rough hierarchically structured surfaces via electrochemical anodization combined with a low-surface-energy coating produced by a fluorinated surfactant. Aerophilic Ti surfaces drastically reduce blood adhesion and, when submerged in water, prevent adhesion of bacteria and marine organisms such as barnacles and mussels. Overall, we demonstrate a general strategy to achieve the long-term stability of plastrons on aerophilic surfaces for previously unattainable underwater applications.

2.
Langmuir ; 40(1): 1117-1129, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38115197

RESUMO

This study demonstrated the importance of identifying the optimal balance of hydrophilic and hydrophobic moieties in amphiphilic coatings to achieve fouling-release (FR) performance that surpasses that of traditional hydrophobic marine coatings. While there have been many reports on fouling-release properties of amphiphilic surfaces, the offered understanding is often limited. Hence, this work is focused on further understanding of the amphiphilic surfaces. Poly(ethylene glycol) (PEG) and polydimethylsiloxane (PDMS) were used to create a series of noncross-linked amphiphilic additives that were then added to a hydrophobic-designed siloxane-polyurethane (SiPU) FR system. After being characterized by ATR-FTIR, XPS, contact angle analysis, and AFM, the FR performance was evaluated by using different marine organisms. The assessments showed that the closer the hydrophilic and hydrophobic moieties in a system reached a relatively equalized level, the more desirable the FR performance of the coating system became. A balanced ratio of hydrophilicity-hydrophobicity in the system at around 10-15 wt % of each component had the best FR performance and was comparable to or better than commercial FR coatings.

3.
Biofouling ; 38(3): 260-270, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35332830

RESUMO

Siloxane-polyurethane hybrid coatings were assessed for biofouling control caused by freshwater mussels. Invasive species such as zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels have rapidly spread through the waterways in the United States causing major concerns in reservoir infrastructure and freshwater lakes. Current coating solutions such as biocidal anti-fouling coatings are not suitable given the released biocides which may accumulate in reservoirs. Biocide free fouling release coatings based on silicone elastomers do not have adequate mechanical durability. The siloxane-polyurethane (SiPU) coatings were evaluated using model organism laboratory assays and real-life performance was evaluated in the freshwater field environment. Two coating compositions displayed excellent performance in field trials for up to 2+ years. The surface analysis experiments of the coatings indicate that the morphology of the coatings is affected by the formulations' solvent choice. These coatings show great promise in mitigating biofouling predominated by freshwater mussels.


Assuntos
Bivalves , Dreissena , Animais , Biofilmes , Lagos , Poliuretanos , Siloxanas
4.
Biofouling ; 38(4): 384-400, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35655420

RESUMO

Grooming may be an effective technique to control marine biofouling without damaging the coating or discharging active ingredients into the environment. This study assessed the grooming performance of three experimental biocide-free siloxane polyurethane (SiPU) fouling-release coatings. Coatings were statically immersed in Port Canaveral, Florida, and groomed every two weeks for five months using three different brush types. The ungroomed panels became heavily fouled with biofilm, tubeworms, barnacles, and bryozoans. Two of the brushes were able to control the fouling with a coverage of <5%. The commercial silicone elastomer coating was damaged from grooming procedures, while the SiPU coatings were not. Laboratory biological assays were carried out and mirrored the grooming results. Through surface characterization techniques, it was concluded that the coatings were unaffected by the grooming procedures. This study shows that marine fouling on durable SiPU fouling-release coatings can be controlled via grooming without damage or changing the surface properties.


Assuntos
Incrustação Biológica , Thoracica , Animais , Biofilmes , Incrustação Biológica/prevenção & controle , Asseio Animal , Poliuretanos , Navios , Siloxanas , Propriedades de Superfície
5.
Langmuir ; 37(8): 2728-2739, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33586437

RESUMO

Amphiphilic surfaces, containing both hydrophilic and hydrophobic domains, offer desirable performance for many applications such as marine coatings or anti-icing purposes. This work explores the effect of the concentration of amphiphilic moieties on converting a polyurethane (PU) system to a coating having fouling-release properties. A novel amphiphilic compound is synthesized and added at increasing amounts to a PU system, where the amount of the additive is the only variable in the study. The additive-modified surfaces are characterized by a variety of techniques including ATR-FTIR, XPS, contact angle measurements, and AFM. Surface characterizations indicate the presence of amphiphilic domains on the surface due to the introduction of the self-stratifying amphiphilic additive. The fouling-release properties of the surfaces are assessed with three biological assays using Ulva linza, Cellulophaga lytica, and Navicula Incerta as the test organisms. A change in the fouling-release performance is observed and plateaued once a certain amount of amphiphilicity is attained in the coating system, which we call the critical amphiphilic concentration (CAC).


Assuntos
Incrustação Biológica , Flavobacteriaceae , Ulva , Incrustação Biológica/prevenção & controle , Propriedades de Superfície
6.
Biofouling ; 37(1): 36-48, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33487051

RESUMO

This study is focused on the development of tougher gels using combinations of acrylamide, fluoromethacrylate and a non-isocyanate urethane dimethacrylate (NIUDMA) crosslinker. The NIUDMA was tailored with 2, 3-epoxypropoxy propyl-polydimethylsiloxane segments E9 (MW = 0.36 kg mol-1), E11 (MW = 0.5-0.6 kg mol-1) and E12 (MW = 1-1.4 kg mol-1). A 3 level Taguchi design was used to evaluate the role of each component of the ternary copolymer gel on the elastic modulus and toughness. The toughness ranged from 2.5-7 MJ m-3 whereas the modulus ranged from 27-70 MPa. The formulations with the highest toughness and modulus were screened for their antifouling potential in biological assays against the microalga Navicula incerta and the bacterium Cellulophaga lytica. The E9 gels showed the best performance, achieving a 73% reduction in N. incerta cells and a 92% reduction in C. lytica biofilm remaining after water jetting treatments, when compared with the commercial Intersleek product IS700.


Assuntos
Acrilamida , Isocianatos , Flavobacteriaceae , Metacrilatos , Poliuretanos
7.
Biofouling ; 37(3): 309-326, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33761816

RESUMO

In this work, surface-modifying amphiphilic additives (SMAAs) were synthesized via hydrosilylation using various polymethylhydrosiloxanes (PMHS) and allyl-terminated polyethylene glycol monomethyl ethers (APEG) of varying molecular weights. The additives synthesized were incorporated into a hydrophobic, self-stratifying siloxane-polyurethane (SiPU) coating system to produce an amphiphilic surface. Contact angle experiments and atomic force microscopy (AFM), in a dry and hydrated state, were performed to assess changes in surface wettability and morphology. The antifouling and fouling-release (AF/FR) performances were evaluated by performing laboratory biological assays using the marine bacterium Cellulophaga lytica, the microalga Navicula incerta, the macroalga Ulva linza, the barnacle Amphibalanus amphitrite, and the marine mussel, Geukensia demissa. Several of the formulations showed improved AF/FR performance vs the base SiPU and performed better than some of the commercial standard marine coatings. Formulations containing SMAAs with a low grafting density of relatively high molecular weight PEG chains showed the best performance overall.


Assuntos
Incrustação Biológica , Flavobacteriaceae , Ulva , Incrustação Biológica/prevenção & controle , Poliuretanos , Siloxanas , Propriedades de Superfície
8.
Biofouling ; 37(2): 131-144, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33730945

RESUMO

Amphiphilic gels consisting of acrylamide (AAM)/2-hydroxyethyl methacrylate (HEMA), hexafluorobutyl methacrylate (HFBMA) and non-isocyanate urethane dimethacrylate (NIUDMA) of varying molecular weights were compared. A three-level Taguchi analysis was performed using the amount of AAM/HEMA, HFBMA, NIUDMA and reaction time as dependent variables to determine the optimal formulation of the gels with maximized toughness and elastic modulus. The results were compared with commercial AF/FR Intersleek® coatings (IS 700, IS 900 and IS 1100SR) for their antifouling performance against a marine microalga (Navicula incerta), a marine bacterium (Cellulophaga lytica) and adult barnacles (Amphibalanus amphitrite). The toughness, elastic modulus and strain at break of the optimized AAM gels ranged from 3 to7 MPa, 25 to 72 MPa and 80% to 170%, respectively, whereas those of the optimized HEMA gels ranged from 1 to 3 MPa, 13 to 23 MPa and 76% to 160%, respectively. The gels, particularly AHN(E9) and HHN(E12), showed reductions of attachment compared with IS700 of up to 93% and 58%, respectively.


Assuntos
Incrustação Biológica , Animais , Incrustação Biológica/prevenção & controle , Flavobacteriaceae , Géis , Isocianatos , Propriedades de Superfície
9.
Biofouling ; 37(1): 78-95, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33491472

RESUMO

Biofouling of man-made surfaces by marine organisms is a global problem with both financial and environmental consequences. However, the development of non-toxic anti-biofouling coatings is challenged by the diversity of fouling organisms. One possible solution leverages coatings composed of diverse chemical constituents. Reversible addition-fragmentation chain-transfer (RAFT) photopolymerization was used to modify poly(dimethylsiloxane) (PDMSe) surfaces with polymeric grafts composed of three successive combinations of acrylamide, acrylic acid, and hydroxyethyl methacrylate. RAFT limited conflicting variables and allowed for the effect of graft chemistry to be isolated. While all compositions enhanced the anti-biofouling performance compared with the PDMSe control, the ternary, amphiphilic copolymer was the most effective with 98% inhibition of the attachment of zoospores of the green alga Ulva linza, 94% removal of cells of the diatom Navicula incerta, and 62% removal of cells of the bacterium Cellulophaga lytica. However, none of the graft compositions tested were able to mitigate reattachment of adult barnacles, Amphibalanus amphitrite.


Assuntos
Incrustação Biológica , Diatomáceas , Ulva , Acrilatos , Animais , Organismos Aquáticos , Incrustação Biológica/prevenção & controle , Flavobacteriaceae , Metacrilatos/farmacologia , Siloxanas , Propriedades de Superfície
10.
Soft Matter ; 15(29): 6014-6026, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31309202

RESUMO

Growing demands for bio-friendly antifouling surfaces have stimulated the development of new and ever-improving material paradigms. Despite notable progress in bio-friendly coatings, the biofouling problem remains a critical challenge. In addition to biofouling characteristics, mechanically stressed surfaces such as ship hulls, piping systems, and heat exchangers require long-term durability in marine environments. Here, we introduce a new generation of anti-biofouling coatings with superior characteristics and high mechanical, chemical and environmental durability. In these surfaces, we have implemented the new physics of stress localization to minimize the adhesion of bio-species on the coatings. This polymeric material contains dispersed organogels in a high shear modulus matrix. Interfacial cavitation induced at the interface of bio-species and organogel particles leads to stress localization and detachment of bio-species from these surfaces with minimal shear stress. In a comprehensive study, the performance of these surfaces is assessed for both soft and hard biofouling including Ulva, bacteria, diatoms, barnacles and mussels, and is compared with that of state-of-the-art surfaces. These surfaces show Ulva accumulation of less than 1%, minimal bacterial biofilm growth, diatom attachment of 2%, barnacle adhesion of 0.02 MPa and mussel adhesion of 7.5 N. These surfaces promise a new physics-based route to address the biofouling problem and avoid adverse effects of biofouling on the environment and relevant technologies.


Assuntos
Incrustação Biológica , Estresse Mecânico , Animais , Aderência Bacteriana , Bivalves/fisiologia , Diatomáceas/fisiologia , Flavobacteriaceae/fisiologia , Propriedades de Superfície , Ulva/fisiologia
11.
Biofouling ; 33(3): 252-267, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28270054

RESUMO

There is currently strong motivation due to ecological concerns to develop effective anti-biofouling coatings that are environmentally benign, durable, and stable for use by the maritime industry. The antifouling (AF) and fouling-release (FR) efficacy of amphiphilic, charged copolymers composed of ~52% acrylamide, ~34% acrylic acid, and ~14% methyl acrylate grafted to poly(dimethyl siloxane) (PDMSe) surfaces were tested against zoospores of the green alga Ulva linza and the diatom Navicula incerta. The biofouling response to molecular weight variation was analyzed for grafts ranging from ~100 to 1,400 kg mol-1, The amphiphilic coatings showed a marked improvement in the FR response, with a 55% increase in the percentage removal of diatoms and increased AF efficacy, with 92% reduction in initial attachment density of zoospores, compared to PDMSe controls. However, graft molecular weight, in the range tested, was statistically insignificant. Grafting copolymers to PDMSe embossed with the Sharklet™ microtopography did not produce enhanced AF efficacy.


Assuntos
Biofilmes/efeitos dos fármacos , Incrustação Biológica/prevenção & controle , Diatomáceas/fisiologia , Dimetilpolisiloxanos/farmacologia , Tensoativos/farmacologia , Ulva/fisiologia , Acrilatos/química , Resinas Acrílicas/química , Biofilmes/crescimento & desenvolvimento , Dimetilpolisiloxanos/química , Peso Molecular , Propriedades de Superfície , Tensoativos/química
12.
Biofouling ; 32(8): 949-68, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27494780

RESUMO

A series of eight novel siloxane-polyurethane fouling-release (FR) coatings were assessed for their FR performance in both the laboratory and in the field. Laboratory analysis included adhesion assessments of bacteria, microalgae, macroalgal spores, adult barnacles and pseudobarnacles using high-throughput screening techniques, while field evaluations were conducted in accordance with standardized testing methods at three different ocean testing sites over the course of six-months exposure. The data collected were subjected to statistical analysis in order to identify potential correlations. In general, there was good agreement between the laboratory screening assays and the field assessments, with both regimes clearly distinguishing the siloxane-polyurethane compositions comprising monofunctional poly(dimethyl siloxane) (PDMS) (m-PDMS) as possessing superior, broad-spectrum FR properties compared to those prepared with difunctional PDMS (d-PDMS). Of the seven laboratory screening techniques, the Cellulophaga lytica biofilm retraction and reattached barnacle (Amphibalanus amphitrite) adhesion assays were shown to be the most predictive of broad-spectrum field performance.


Assuntos
Biofilmes/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Poliuretanos/química , Siloxanas/química , Animais , Adesão Celular/fisiologia , Dimetilpolisiloxanos/química , Flavobacteriaceae/fisiologia , Ensaios de Triagem em Larga Escala , Microalgas/fisiologia , Modelos Teóricos , Propriedades de Superfície , Thoracica/fisiologia
13.
Biofouling ; 31(7): 613-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26343202

RESUMO

A series of polysulfone and polyacrylate-based zwitterionic coatings were prepared on epoxy-primed aluminum substrata and characterized for their antifouling (AF) and fouling-release (FR) properties towards marine bacteria, microalgae and barnacles. The zwitterionic polymer coatings provided minimal resistance against bacterial biofilm retention and microalgal cell attachment, but facilitated good removal of attached microbial biomass by exposure to water-jet apparatus generated hydrodynamic shearing forces. Increasing the ion content of the coatings improved the AF properties, but required a stronger adhesive bond to the epoxy-primed aluminum substratum to prevent coating swelling and dissolution. Grafted poly(sulfobetaine) (gpSBMA), the most promising zwitterionic coating identified from microfouling evaluations, enabled the removal of four out of five barnacles reattached to its surface without incurring damage to their baseplates. This significant result indicated that gpSBMA relied predominately on its surface chemistry for its FR properties since it was very thin (~1-2 µm) relative to commercial coating standards (>200 µm).


Assuntos
Bactérias/efeitos dos fármacos , Biofilmes , Incrustação Biológica/prevenção & controle , Metacrilatos , Microalgas , Polímeros , Sulfonas , Thoracica , Animais , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Metacrilatos/química , Metacrilatos/farmacologia , Microalgas/efeitos dos fármacos , Microalgas/fisiologia , Polímeros/química , Polímeros/farmacologia , Sulfonas/química , Sulfonas/farmacologia , Propriedades de Superfície/efeitos dos fármacos , Thoracica/efeitos dos fármacos , Thoracica/fisiologia
14.
Biofouling ; 31(2): 135-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25647177

RESUMO

High-throughput methods were used to prepare and characterize the fouling-release (FR) properties of an array of amphiphilic polysiloxane-based coatings possessing systematic variations in composition. The coatings were derived from a silanol-terminated polydimethylsiloxane, a silanol-terminated polytrifluorpropylmethylsiloxane (CF3-PDMS), 2-[methoxy(polyethyleneoxy)propyl]-trimethoxysilane (TMS-PEG), methyltriacetoxysilane and hexamethyldisilazane-treated fumed silica. The variables investigated were the concentration of TMS-PEG and the concentration of CF3-PDMS. In general, it was found that the TMS-PEG and the CF3-PDMS had a synergist effect on FR properties with these properties being enhanced by combining both compounds into the coating formulations. In addition, reattached adult barnacles removed from coatings possessing both TMS-PEG and relatively high levels of CF3-PDMS displayed atypical base-plate morphologies. The majority of the barnacles removed from these coatings exhibited a cupped or domed base-plate as compared to the flat base-plate observed for the control coating that did not contain TMS-PEG or CF3-PDMS. Coating surface analysis using water contact angle measurements indicated that the presence of CF3-PDMS facilitated migration of TMS-PEG to the coating/air interface during the film formation/curing process. In general, coatings containing both TMS-PEG and relatively high levels of CF3-PDMS possessed excellent FR properties.


Assuntos
Incrustação Biológica/prevenção & controle , Siloxanas/química , Thoracica/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Técnicas de Química Combinatória , Cytophaga/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Halomonas/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Propriedades de Superfície
15.
J Basic Microbiol ; 54(12): 1403-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25042085

RESUMO

The desire to attain a deeper understanding of the fundamental aspects governing the mechanical properties of biofilms has become more prominent in recent years. This has largely been due to the realization that these sessile microbial communities often withstand environments where hydrodynamic turbulence and shearing forces are considerable. In the present study, Escherichia coli K-12 was used as a model system to develop a laboratory technique that can be used to quickly screen the mechanical integrity or stability of laboratory cultivated bacterial biofilms when exposed to such external, hydrodynamic shear forces. The screening method utilizes a custom-built, automated water jetting apparatus to generate and precisely apply a pressurized stream of water directly to biofilms cultured in multi-well plates. An optimized set of water jetting parameters was determined to resolve subtle to moderate differences in the mechanical stability of isogenic strains of E. coli K-12 as a function of percent biofilm removal. Mutations in both flagella biosynthesis (fliA) and acetate metabolism (ackA and ackA pta) were shown to impair the mechanical integrity of 24-h biofilms, while a "housekeeping" strain deficient in arginine metabolism (argD) exhibited a mechanical stability profile comparable to the parent strain.


Assuntos
Escherichia coli K12/fisiologia , Biofilmes , Fímbrias Bacterianas/metabolismo , Flagelos/metabolismo , Hidrodinâmica , Mutação , Estresse Mecânico
16.
Langmuir ; 29(9): 2897-905, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23394402

RESUMO

Poly(dimethylsiloxane) (PDMS) materials have been extensively shown to function as excellent fouling-release (FR) coatings in the marine environment. The incorporation of biocide moieties, such as quaternary ammonium salts (QAS), can impart additional antibiofouling properties to PDMS-based FR coating systems. In this study, the molecular surface structures of two different types of QAS-incorporated PDMS systems were investigated in different chemical environments using sum frequency generation vibrational spectroscopy (SFG). Specifically, a series of PDMS coatings containing either a QAS with a single ammonium salt group per molecule or a quaternary ammonium-functionalized polyhedral oligomeric silsesquioxane (Q-POSS) were measured with SFG in air, water, and artificial seawater (ASW) to investigate the relationships between the interfacial surface structures of these materials and their antifouling properties. Although previous studies have shown that the above-mentioned materials are promising contact-active antifouling coatings, slight variations of the QAS structure can lead to substantial differences in the antifouling performance. Indeed, the SFG results presented here indicated that the surface structures of these materials depend on several factors, such as the extent of quaternization, the molecular weight of the PDMS component, and the functional groups of the QAS used for incorporation into the PDMS matrix. It was concluded that in aqueous environments a lower extent of Q-POSS quaternization and the use of ethoxy (instead of methoxy) functional groups for QAS incorporation facilitated the extension of the alkyl chains away from the nitrogen atom of the QAS on the surface. The SFG results correlated well with the antifouling activity studies that indicated that the coatings exhibiting a lower concentration of longer alkyl chains protruding out of the surface can neutralize microorganisms more effectively, ultimately leading to better antifouling performance. Furthermore, the results of this study provide additional evidence that incorporated QAS exert their antimicrobial activity through a two-step interaction. The first step is the adsorption of the bacteria on the surface as a result of the electrostatic attraction between the negatively charged microorganisms and the positively charged QAS nitrogen atoms on the surface. The second step is the disruption of the cell membranes by the penetration of the QAS long, extended alkyl chains.


Assuntos
Incrustação Biológica/prevenção & controle , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Desenho de Fármacos , Compostos de Amônio Quaternário/química , Sais/química , Ar , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Silanos/química , Relação Estrutura-Atividade , Propriedades de Superfície , Água/química
17.
Biomacromolecules ; 13(8): 2537-45, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-22759064

RESUMO

Strategically designed amphiphilic invertible polymers (AIPs) are capable of (i) self-assembling into invertible micellar assemblies (IMAs) in response to changes in polarity of environment, polymer concentration, and structure, (ii) accommodating (solubilizing) substances that are otherwise insoluble in water, and (iii) inverting their molecular conformation in response to changes in the polarity of the local environment. The unique ability of AIPs to invert the molecular conformation depending on the polarity of the environment can be a decisive factor in establishing the novel stimuli-responsive mechanism of solubilized drug release that is induced just in response to a change in the polarity of the environment. The IMA capability to solubilize lipophilic drugs and deliver and release the cargo molecules by conformational inversion of polymer macromolecules in response to a change of the polarity of the environment was demonstrated by loading IMA with a phytochemical drug, curcumin. It was demonstrated that four sets of micellar vehicles based on different AIPs were capable of delivering the curcumin from water to an organic medium (1-octanol) by means of unique mechanism: AIP conformational inversion in response to changing polarity from polar to nonpolar. The IMAs are shown to be nontoxic against human cells up to a concentration of 10 mg/L. On the other hand, the curcumin-loaded IMAs are cytotoxic to breast carcinoma cells at this concentration, which confirms the potential of IMA-based vehicles in controlled delivery of poorly water-soluble drug candidates and release by means of this novel stimuli-responsive mechanism.


Assuntos
Butileno Glicóis/química , Curcumina/química , Micelas , Nanocápsulas/química , Polietilenoglicóis/química , Polímeros/química , Tensoativos/química , 1-Octanol/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/metabolismo , Curcumina/farmacologia , Estabilidade de Medicamentos , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Transição de Fase , Solubilidade , Água/química
18.
Biofouling ; 28(5): 511-23, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22616756

RESUMO

Five non-biocidal xerogel coatings were compared to two commercial non-biocidal coatings and a silicone standard with respect to antifouling (AF)/fouling-release (FR) characteristics. The formation and release of biofilm of the marine bacterium Cellulophaga lytica, the attachment and release of the microalga Navicula incerta, and the fraction removal and critical removal stress of reattached adult barnacles of Amphibalanus amphitrite were evaluated in laboratory assays. Correlations of AF/FR performance with surface characteristics such as wettability, surface energy, elastic modulus, and surface roughness were examined. Several of the xerogel coating compositions performed well against both microfouling organisms while the commercial coatings performed less well toward the removal of microalgae. Reattached barnacle adhesion as measured by critical removal stress was significantly lower on the commercial coatings when compared to the xerogel coatings. However, two xerogel compositions showed release of 89-100% of reattached barnacles. These two formulations were also tested in the field and showed similar results.


Assuntos
Incrustação Biológica/prevenção & controle , Flavobacteriaceae/efeitos dos fármacos , Géis/farmacologia , Microalgas/efeitos dos fármacos , Thoracica/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Adesão Celular , Flavobacteriaceae/fisiologia , Géis/química , Microalgas/fisiologia , Thoracica/fisiologia , Molhabilidade
19.
Pharmaceutics ; 14(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893806

RESUMO

Biocompatible and biodegradable materials have been used for fabricating polymeric microneedles to deliver therapeutic drug molecules through the skin. Microneedles have advantages over other drug delivery methods, such as low manufacturing cost, controlled drug release, and the reduction or absence of pain. The study examined the delivery of amphotericin B, an antifungal agent, using microneedles that were fabricated using a micromolding technique. The microneedle matrix was made from GantrezTM AN-119 BF, a benzene-free methyl vinyl ether/maleic anhydride copolymer. The GantrezTM AN-119 BF was mixed with water; after water evaporation, the polymer exhibited sufficient strength for microneedle fabrication. Molds cured at room temperature remained sharp and straight. SEM images showed straight and sharp needle tips; a confocal microscope was used to determine the height and tip diameter for the microneedles. Nanoindentation was used to obtain the hardness and Young's modulus values of the polymer. Load-displacement testing was used to assess the failure force of the needles under compressive loading. These two mechanical tests confirmed the mechanical properties of the needles. In vitro studies validated the presence of amphotericin B in the needles and the antifungal properties of the needles. Amphotericin B GantrezTM microneedles fabricated in this study showed appropriate characteristics for clinical translation in terms of mechanical properties, sharpness, and antifungal properties.

20.
Bioengineering (Basel) ; 9(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35200400

RESUMO

Governed by established structure-property relationships, peptide motifs comprising major ampullate spider silk confer a balance of strength and extensibility. Other biologically inspired small peptide motifs correlated to specific functionalities can be combined within these units to create designer silk materials with new hybrid properties. In this study, a small basic peptide, (ARKKAAKA) known to both bind heparin and mimic an antimicrobial peptide, was genetically linked to a protease-resistant, mechanically robust silk-like peptide, MaSp2. Purified fusion proteins (four silk domains and four heparin-binding peptide repeats) were expressed in E. coli. Successful fusion of a MaSp2 spider silk peptide with the heparin-binding motif was shown using a variety of analytical assays. The ability of the fusion peptide to bind heparin was assessed with ELISA and was further tested for its anticoagulant property using aPTT assay. Its intrinsic property to inhibit bacterial growth was evaluated using zone of inhibition and crystal violet (CV) assays. Using this strategy, we were able to link the two types of genetic motifs to create a designer silk-like protein with improved hemocompatibility and antimicrobial properties.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa