Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 218(3): 378-387, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29617814

RESUMO

Background: Respiratory syncytial virus infection can cause lower respiratory tract infection in older adults comparable to influenza, but no vaccines are available. Methods: This was a randomized, observer-blinded, first-in-humans study of a novel synthetic RSV antigen based on the ectodomain of the small hydrophobic glycoprotein (SHe) of RSV subgroup A, formulated with either the lipid and oil-based vaccine platform DepoVax (DPX-RSV[A]) or alum (RSV[A]-Alum), in healthy, 50-64-year-old individuals. Two dose levels (10 or 25 µg) of SHe with each formulation were compared to placebo. A booster dose was administered on day 56. Results: There was no indication that the vaccine was unsafe. Mild pain, drowsiness, and muscles aches were the most common solicited adverse events (AEs), and the frequencies of the AEs did not increase after dose 2. Robust anti-SHe-specific immune responses were demonstrated in the DPX-RSV(A) 10-µg and 25-µg groups (geometric mean titer, approximately 10-fold and 100-fold greater than that of placebo at days 56 and 236, respectively), and responses were sustained in the DPX-RSV(A) 25-µg group at day 421. Responses to the RSV(A)-Alum vaccines were very low. Conclusions: A novel antigen from the SH protein of RSV, formulated in a lipid and oil-based vaccine platform, was highly immunogenic, with sustained antigen-specific antibody responses, and had an acceptable safety profile.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antivirais/sangue , Lipídeos/administração & dosagem , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Oncogênicas de Retroviridae/imunologia , Compostos de Alúmen/administração & dosagem , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , Voluntários Saudáveis , Humanos , Imunidade Humoral , Esquemas de Imunização , Masculino , Pessoa de Meia-Idade , Placebos/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Método Simples-Cego , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/efeitos adversos , Vacinas de Subunidades Antigênicas/imunologia
2.
Magn Reson Med ; 80(1): 304-316, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29193231

RESUMO

PURPOSE: MRI cell tracking can be used to monitor immune cells involved in the immunotherapy response, providing insight into the mechanism of action, temporal progression of tumor growth, and individual potency of therapies. To evaluate whether MRI could be used to track immune cell populations in response to immunotherapy, CD8+ cytotoxic T cells, CD4+ CD25+ FoxP3+ regulatory T cells, and myeloid-derived suppressor cells were labeled with superparamagnetic iron oxide particles. METHODS: Superparamagnetic iron oxide-labeled cells were injected into mice (one cell type/mouse) implanted with a human papillomavirus-based cervical cancer model. Half of these mice were also vaccinated with DepoVaxTM (ImmunoVaccine, Inc., Halifax, Nova Scotia, Canada), a lipid-based vaccine platform that was developed to enhance the potency of peptide-based vaccines. RESULTS: MRI visualization of CD8+ cytotoxic T cells, regulatory T cells, and myeloid-derived suppressor cells was apparent 24 h post-injection, with hypointensities due to iron-labeled cells clearing approximately 72 h post-injection. Vaccination resulted in increased recruitment of CD8+ cytotoxic T cells, and decreased recruitment of myeloid-derived suppressor cells and regulatory T cells to the tumor. We also found that myeloid-derived suppressor cell and regulatory T cell recruitment were positively correlated with final tumor volume. CONCLUSION: This type of analysis can be used to noninvasively study changes in immune cell recruitment in individual mice over time, potentially allowing improved application and combination of immunotherapies. Magn Reson Med 80:304-316, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Vacinas Anticâncer/imunologia , Rastreamento de Células/métodos , Imunoterapia/métodos , Imageamento por Ressonância Magnética , Peptídeos/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Feminino , Compostos Férricos/química , Fatores de Transcrição Forkhead/metabolismo , Processamento de Imagem Assistida por Computador , Sistema Imunitário , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Lipídeos/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Mieloides/metabolismo , Papillomaviridae , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
3.
J Biomed Sci ; 25(1): 7, 2018 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-29374458

RESUMO

BACKGROUND: Oil emulsions are commonly used as vaccine delivery platforms to facilitate slow release of antigen by forming a depot at the injection site. Antigen is trapped in the aqueous phase and as the emulsion degrades in vivo the antigen is passively released. DepoVax™ is a unique oil based delivery system that directly suspends the vaccine components in the oil diluent that forces immune cells to actively take up components from the formulation in the absence of passive release. The aim of this study was to use magnetic resonance imaging (MRI) with additional biological markers to evaluate and understand differences in clearance between several different delivery systems used in peptide-based cancer vaccines. METHODS: C57BL/6 mice were implanted with a cervical cancer model and vaccinated 5 days post-implant with either DepoVax (DPX), a water-in-oil emulsion (w/o), a squalene oil-in-water emulsion (squal o/w) or a saponin/liposome emulsion (sap/lip) containing iron oxide-labeled targeted antigen. MRI was then used to monitor antigen clearance, the site of injection, tumour and inguinal lymph node volumes and other gross anatomical changes. HLA-A2 transgenic mice were also vaccinated to evaluate immune responses of human directed peptides. RESULTS: We demonstrated differences in antigen clearance between DPX and w/o both in regard to how quickly the antigen was cleared and the pattern in which it was cleared. We also found differences in lymph node responses between DPX and both squal o/w and sap/lip. CONCLUSIONS: These studies underline the unique mechanism of action of this clinical stage vaccine delivery system.


Assuntos
Vacinas Anticâncer/imunologia , Linfonodos/imunologia , Neoplasias do Colo do Útero/prevenção & controle , Animais , Vacinas Anticâncer/administração & dosagem , Sistemas de Liberação de Medicamentos , Emulsões , Feminino , Linfonodos/diagnóstico por imagem , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias do Colo do Útero/etiologia
4.
Mol Ther ; 20(6): 1148-57, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22273579

RESUMO

Replicating viruses for the treatment of cancer have a number of advantages over traditional therapeutic modalities. They are highly targeted, self-amplifying, and have the added potential to act as both gene-therapy delivery vehicles and oncolytic agents. Parapoxvirus ovis or Orf virus (ORFV) is the prototypic species of the Parapoxvirus genus, causing a benign disease in its natural ungulate host. ORFV possesses a number of unique properties that make it an ideal viral backbone for the development of a cancer therapeutic: it is safe in humans, has the ability to cause repeat infections even in the presence of antibody, and it induces a potent T(h)-1-dominated immune response. Here, we show that live replicating ORFV induces an antitumor immune response in multiple syngeneic mouse models of cancer that is mediated largely by the potent activation of both cytokine-secreting, and tumoricidal natural killer (NK) cells. We have also highlighted the clinical potential of the virus by demonstration of human cancer cell oncolysis including efficacy in an A549 xenograft model of cancer.


Assuntos
Vetores Genéticos/administração & dosagem , Neoplasias/imunologia , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/imunologia , Vírus do Orf/imunologia , Animais , Linhagem Celular Tumoral , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Terapia Genética , Vetores Genéticos/efeitos adversos , Humanos , Imunidade Inata , Células Matadoras Naturais/imunologia , Pulmão/imunologia , Pulmão/metabolismo , Neoplasias Pulmonares/secundário , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/genética , Vírus Oncolíticos/genética , Vírus do Orf/genética , Baço/imunologia , Baço/metabolismo , Carga Tumoral , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Transl Med ; 10: 156, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22862954

RESUMO

BACKGROUND: DepoVax is a novel non-emulsion depot-forming vaccine platform with the capacity to significantly enhance the immunogenicity of peptide cancer antigens. Naturally processed HLA-A2 restricted peptides presented by breast, ovarian and prostate cancer cells were used as antigens to create a therapeutic cancer vaccine, DPX-0907. METHODS: A phase I clinical study was designed to examine the safety and immune activating potential of DPX-0907 in advanced stage breast, ovarian and prostate cancer patients. A total of 23 late stage cancer patients were recruited and were divided into two dose/volume cohorts in a three immunization protocol. RESULTS: DPX-0907 was shown to be safe with injection site reactions being the most commonly reported adverse event. All breast cancer patients (3/3), most of ovarian (5/6) and one third of prostate (3/9) cancer patients exhibited detectable immune responses, resulting in a 61% immunological response rate. Immune responses were generally observed in patients with better disease control after their last prior treatment. Antigen-specific responses were detected in 73% of immune responders (44% of evaluable patients) after the first vaccination. In 83% of immune responders (50% of evaluable patients), peptide-specific T cell responses were detected at ≥2 time points post vaccination with 64% of the responders (39% of evaluable patients) showing evidence of immune persistence. Immune monitoring also demonstrated the generation of antigen-specific T cell memory with the ability to secrete multiple Type 1 cytokines. CONCLUSIONS: The novel DepoVax formulation promotes multifunctional effector memory responses to peptide-based tumor associated antigens. The data supports the capacity of DPX-0907 to elicit Type-1 biased immune responses, warranting further clinical development of the vaccine. This study underscores the importance of applying vaccines in clinical settings in which patients are more likely to be immune competent. TRIAL REGISTRATION: ClinicalTrials.gov NCT01095848.


Assuntos
Neoplasias da Mama/imunologia , Vacinas Anticâncer/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias da Próstata/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Estudos de Coortes , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
Mol Ther ; 19(5): 886-94, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21364541

RESUMO

Oncolytic viruses (OVs) have been engineered or selected for cancer cell-specific infection however, we have found that following intravenous administration of vesicular stomatitis virus (VSV), tumor cell killing rapidly extends far beyond the initial sites of infection. We show here for the first time that VSV directly infects and destroys tumor vasculature in vivo but leaves normal vasculature intact. Three-dimensional (3D) reconstruction of infected tumors revealed that the majority of the tumor mass lacks significant blood flow in contrast to uninfected tumors, which exhibit relatively uniform perfusion. VSV replication in tumor neovasculature and spread within the tumor mass, initiates an inflammatory reaction including a neutrophil-dependent initiation of microclots within tumor blood vessels. Within 6 hours of intravenous administration of VSV and continuing for at least 24 hours, we observed the initiation of blood clots within the tumor vasculature whereas normal vasculature remained clot free. Blocking blood clot formation with thrombin inhibitors prevented tumor vascular collapse. Our results demonstrate that the therapeutic activity of an OV can go far beyond simple infection and lysis of malignant cells.


Assuntos
Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/terapia , Neovascularização Patológica/genética , Neovascularização Patológica/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus da Estomatite Vesicular Indiana , Adenocarcinoma/genética , Animais , Coagulação Sanguínea , Linhagem Celular Tumoral , Proliferação de Células , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos , Trombina/antagonistas & inibidores
7.
Front Cell Infect Microbiol ; 12: 1049065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605129

RESUMO

Background: RH5 is the leading vaccine candidate for the Plasmodium falciparum blood stage and has shown impact on parasite growth in the blood in a human clinical trial. RH5 binds to Ripr and CyRPA at the apical end of the invasive merozoite form, and this complex, designated RCR, is essential for entry into human erythrocytes. RH5 has advanced to human clinical trials, and the impact on parasite growth in the blood was encouraging but modest. This study assessed the potential of a protein-in-adjuvant blood stage malaria vaccine based on a combination of RH5, Ripr and CyRPA to provide improved neutralizing activity against P. falciparum in vitro. Methods: Mice were immunized with the individual RCR antigens to down select the best performing adjuvant formulation and rats were immunized with the individual RCR antigens to select the correct antigen dose. A second cohort of rats were immunized with single, double and triple antigen combinations to assess immunogenicity and parasite neutralizing activity in growth inhibition assays. Results: The DPX® platform was identified as the best performing formulation in potentiating P. falciparum inhibitory antibody responses to these antigens. The three antigens derived from RH5, Ripr and CyRPA proteins formulated with DPX induced highly inhibitory parasite neutralising antibodies. Notably, RH5 either as a single antigen or in combination with Ripr and/or CyRPA, induced inhibitory antibodies that outperformed CyRPA, Ripr. Conclusion: An RCR combination vaccine may not induce substantially improved protective immunity as compared with RH5 as a single immunogen in a clinical setting and leaves the development pathway open for other antigens to be combined with RH5 as a next generation malaria vaccine.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Camundongos , Ratos , Animais , Antígenos de Protozoários , Proteínas de Protozoários/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum , Anticorpos Antiprotozoários , Vacinas Combinadas
8.
Mol Ther ; 18(5): 896-902, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20160706

RESUMO

A number of oncolytic virus (OV) candidates currently in clinical trials are human viruses that have been engineered to be safer for patient administration by limiting normal cell targeting and replication. The newest OVs include viruses that cause no disease in humans, yet still have natural tumor tropism. Raccoonpox virus (RCNV) is a member of the Orthopoxvirus genus of Poxviridae and closely related to vaccinia virus, yet has no known pathogenicity in any mammalian species. A screen of cells from the NCI-60 cancer cell panel using growth curves demonstrated greater than a log increase in replication of RCNV in nearly 74% of the cell lines tested, similar to other tested OV poxviruses. In normal cell lines, pretreatment with interferon (IFN)-alpha/beta resulted in significant inhibition of RCNV replication. In both xenograft and syngeneic models of solid tumors, injection of RCNV resulted in significantly slower tumor progression and increased survival of mice. RCNV treatment also prolonged survival in treatment-resistant models of brain tumors and decreased tumor burden by systemic administration in models of lung metastasis.


Assuntos
Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Poxviridae/fisiologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Interferon-alfa/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Vírus Oncolíticos/genética , Poxviridae/genética , Replicação Viral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Mol Ther ; 18(5): 888-95, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20234341

RESUMO

A major barrier to all oncolytic viruses (OVs) in clinical development is cellular innate immunity, which is variably active in a spectrum of human malignancies. To overcome the heterogeneity of tumor response, we combined complementary OVs that attack cancers in distinct ways to improve therapeutic outcome. Two genetically distinct viruses, vesicular stomatitis virus (VSV) and vaccinia virus (VV), were used to eliminate the risk of recombination. The combination was tested in a variety of tumor types in vitro, in immunodeficient and immunocompetent mouse tumor models, and ex vivo, in a panel of primary human cancer samples. We found that VV synergistically enhanced VSV antitumor activity, dependent in large part on the activity of the VV B18R gene product. A recombinant version of VSV expressing the fusion-associated small-transmembrane (p14FAST) protein also further enhanced the ability of VV to spread through an infected monolayer, resulting in a "ping pong" oncolytic effect wherein each virus enhanced the ability of the other to replicate and/or spread in tumor cells. Our strategy is the first example where OVs are rationally combined to utilize attributes of different OVs to overcome the heterogeneity of malignancies and demonstrates the feasibility of combining complementary OVs to improve therapeutic outcome.


Assuntos
Neoplasias/terapia , Terapia Viral Oncolítica/efeitos adversos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Animais , Chlorocebus aethiops , Feminino , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/genética , Células HT29 , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus , Vírus Oncolíticos/genética , Vaccinia virus/genética , Vaccinia virus/fisiologia , Células Vero , Vesiculovirus/genética , Vesiculovirus/fisiologia
10.
Sci Rep ; 11(1): 4502, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627686

RESUMO

DPX is a novel delivery platform that generates targeted CD8 + T cells and drives antigen-specific cytotoxic T cells into tumours. Cancer cells upregulate phosphatidylserine (PS) on the cell surface as a mechanism to induce an immunosuppressive microenvironment. Development of anti-PS targeting antibodies have highlighted the ability of a PS-blockade to enhance tumour control by T cells by releasing immunosuppression. Here, C57BL/6 mice were implanted with HPV16 E7 target-expressing C3 tumours and subjected to low dose intermittent cyclophosphamide (CPA) in combination with DPX-R9F treatment targeting an E7 antigen with and without anti-PS and/or anti-PD-1 targeting antibodies. Immune responses were assessed via IFN-γ ELISPOT assay and the tumour microenvironment was further analyzed using RT-qPCR. We show that the combination of DPX-R9F and PS-targeting antibodies with and without anti-PD-1 demonstrated increased efficacy compared to untreated controls. All treatments containing DPX-R9F led to T cell activation as assessed by IFN-γ ELISPOT. Furthermore, DPX-R9F/anti-PS treatment significantly elevated cytotoxic T cells, macrophages and dendritic cells based on RT-qPCR analysis. Overall, our data indicates that anti-tumour responses are driven through a variety of immune cells within this model and highlights the need to investigate combination therapies which increase tumour immune infiltration, such as anti-phosphotidylserine.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade/imunologia , Proteínas E7 de Papillomavirus/imunologia , Fosfatidilserinas/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia , Microambiente Tumoral/imunologia
11.
Clin Med Insights Oncol ; 15: 1179554921993069, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633477

RESUMO

BACKGROUND: Myxoma virus (MYXV) is an oncolytic poxvirus that lacks the gene for 1 of the subunits of ribonucleotide reductase (RR), a crucial DNA synthesis and repair enzyme. The overexpression of RR has been implicated in the invasiveness of several cancers, including soft tissue sarcomas (STS). The purpose of the study was to investigate the oncolytic efficacy of MYXV in STS with different levels of RR expression. METHODS: The oncolytic effect of recombinant MYXV was evaluated in 4 human STS cell lines, LS141 (a dedifferentiated liposarcoma), DDLS8817 (a dedifferentiated liposarcoma), RDD2213 (recurrent dedifferentiated liposarcoma), and HSSYII (a synovial sarcoma) using infectivity and cytotoxicity assays. Following the overexpression of RRM2 by cDNA transfection and silencing of RRM2 by siRRM2 in these STS cell lines, the RRM2 expression levels were analyzed by Western blot. RESULTS: We observed a direct correlation between viral oncolysis and RRM2 mRNA levels (R = 0.96) in STS. Higher RRM2 expression was associated with a more robust cell kill. Silencing the RRM2 gene led to significantly greater cell survival (80%) compared with the control group (P = .003), whereas overexpression of the RRM2 increased viral oncolysis by 33% (P < .001). CONCLUSIONS: Our results show that the oncolytic effects of MYXV correlate directly with RR expression levels and are enhanced in STS cell lines with naturally occurring or artificially induced high expression levels of RR. Myxoma virus holds promise in the treatment of advanced soft tissue cancer, especially in tumors overexpressing RR.

12.
J Virol ; 83(18): 9602-7, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19570854

RESUMO

The M141 protein of myxoma virus (MYXV) is a viral CD200 homolog (also called vOX-2) that inhibits macrophage activation in infected rabbits. Here, we show that murine myeloid RAW 264.7 cells became activated when infected with MYXV in which the M141 gene was deleted (vMyx-M141KO) but not with the parental wild-type MYXV. Moreover, transcript and protein levels of tumor necrosis factor and granulocyte colony-stimulating factor were rapidly upregulated in an NF-kappaB-dependent fashion in the RAW 264.7 cells infected with vMyx-M141KO. M141 protein is present in the virion and counteracts this NF-kappaB activation pathway upon infection with the wild-type MYXV. Our data suggest that upregulation of these classic macrophage-related proinflammatory cytokine markers following infection of myeloid cells with the M141-knockout MYXV is mediated via the rapid activation of the cellular NF-kappaB pathway.


Assuntos
Ativação de Macrófagos/imunologia , Macrófagos/virologia , Myxoma virus/imunologia , Proteínas Virais/fisiologia , Animais , Antígenos CD , Linhagem Celular , Fator Estimulador de Colônias de Granulócitos/genética , Camundongos , Células Mieloides/virologia , Myxoma virus/patogenicidade , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/genética , Regulação para Cima
13.
Oncoimmunology ; 9(1): 1782574, 2020 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-32923145

RESUMO

The induction of tumor-targeted, cytotoxic T lymphocytes has been recognized as a key component to successful immunotherapy. DPX-based treatment was previously shown to effectively recruit activated CD8+ T cells to the tumor. Herein, we analyze the unique phenotype of the CD8+ T cells recruited into the tumor in response to DPX-based therapy, and how combination with checkpoint inhibitors impacts T cell response. C3-tumor-bearing mice were treated with cyclophosphamide (CPA) for seven continuous days every other week, followed by DPX treatment along with anti-CTLA-4 and/or anti-PD-1. Efficacy, immunogenicity, and CD8+ T cells tumor infiltration were assessed. The expression of various markers, including checkpoint markers, peptide specificity, and proliferation and activation markers, was determined by flow cytometry. tSNE analysis of the flow data revealed a resident phenotype of CD8+ T cells (PD-1+TIM-3+CTLA-4+) within untreated tumors, whereas DPX/CPA treatment induced recruitment of a novel population of CD8+ T cells (PD-1+TIM-3+CTLA-4-) within tumors. Combination of anti-CTLA-4 (ipilimumab) with DPX/CPA versus DPX/CPA alone significantly increased survival and inhibition of tumor growth, without changing overall systemic immunogenicity. Addition of checkpoint inhibitors did not significantly change the phenotype of the newly recruited cells induced by DPX/CPA. Yet, anti-CTLA-4 treatment in combination with DPX/CPA enhanced a non-antigen specific response within the tumor. Finally, the tumor-recruited CD8+ T cells induced by DPX/CPA were highly activated, antigen-specific, and proliferative, while resident phenotype CD8+ T cells, seemingly initially exhausted, were reactivated with combination treatment. This study supports the potential of combining DPX/CPA with ipilimumab to further enhance survival clinically.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Animais , Linfócitos T CD8-Positivos , Feminino , Imunoterapia , Linfócitos do Interstício Tumoral , Camundongos , Camundongos Endogâmicos C57BL
14.
Oncoimmunology ; 9(1): 1851539, 2020 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-33299663

RESUMO

DPX is a unique T cell activating formulation that generates robust immune responses (both clinically and preclinically) which can be tailored to various cancers via the use of tumor-specific antigens and adjuvants. While DPX-based immunotherapies may act complementary with checkpoint inhibitors, combination therapy is not always easily predictable based on individual therapeutic responses. Optimizing these combinations can be improved by understanding the mechanism of action underlying the individual therapies. Magnetic Resonance Imaging (MRI) allows tracking of cells labeled with superparamagnetic iron oxide (SPIO), which can yield valuable information about the localization of crucial immune cell subsets. In this work, we evaluated the use of a multi-echo, single point MRI pulse sequence, TurboSPI, for tracking and quantifying cytotoxic T lymphocytes (CTLs) and myeloid lineage cells (MLCs). In a subcutaneous cervical cancer model (C3) we compared untreated mice to mice treated with either a single therapy (anti-PD-1 or DPX-R9F) or a combination of both therapies. We were able to detect, using TurboSPI, significant increases in CTL recruitment dynamics in response to combination therapy. We also observed differences in MLC recruitment to therapy-draining (DPX-R9F) lymph nodes in response to treatment with DPX-R9F (alone or in combination with anti-PD-1). We demonstrated that the therapies presented herein induced time-varying changes in cell recruitment. This work establishes that these quantitative molecular MRI techniques can be expanded to study a number of cancer and immunotherapy combinations to improve our understanding of longitudinal immunological changes and mechanisms of action.


Assuntos
Rastreamento de Células , Neoplasias , Animais , Imunoterapia , Linfonodos/diagnóstico por imagem , Imageamento por Ressonância Magnética , Camundongos
15.
Hum Vaccin Immunother ; 16(9): 2007-2017, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32530723

RESUMO

The small hydrophobic (SH) glycoprotein of human respiratory syncytial virus (RSV) is a transmembrane protein that is poorly accessible by antibodies on the virion but has an ectodomain (SHe) that is accessible and expressed on infected cells. The SHe from RSV strain A has been formulated in DPX, a unique delivery platform containing an adjuvant, and is being evaluated as an RSV vaccine candidate. The proposed mechanism of protection is the immune-mediated clearance of infected cells rather than neutralization of the virion. Our phase I clinical trial data clearly showed that vaccination resulted in robust antibody responses, but it was unclear if these immune responses have any correlation to immune responses to natural infection with RSV. Therefore, we embarked on this study to examine these immune responses in older adults with confirmed RSV infection. We compared vaccine-induced (DPX-RSV(A)) immune responses from participants in a Phase 1 clinical trial to paired acute and convalescent titers from older adults with symptomatic laboratory-confirmed RSV infection. Serum samples were tested for anti-SHe IgG titers and the isotypes determined. T cell responses were evaluated by IFN-γ ELISPOT. Anti-SHe titers were detected in 8 of 42 (19%) in the acute phase and 16 of 42 (38%) of convalescent serum samples. IgG1, IgG3, and IgA were the prevalent isotypes generated by both vaccination and infection. Antigen-specific T cell responses were detected in 9 of 16 (56%) of vaccinated participants. Depletion of CD4+ but not CD8+ T cells abrogated the IFN-γ ELISPOT response supporting the involvement of CD4+ T cells in the immune response to vaccination. The data showed that an immune response like that induced by DPX-RSV(A) could be seen in a subset of participants with confirmed RSV infection. These findings show that older adults with clinically significant infection as well as vaccinated adults generate a humoral response to SHe. The induction of both SHe-specific antibody and cellular responses support further clinical development of the DPX-RSV(A) vaccine.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Idoso , Animais , Anticorpos Antivirais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Linfócitos T
16.
Front Immunol ; 11: 264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210956

RESUMO

Many pathogens use the same immune evasion mechanisms as cancer cells. Patients with chronic infections have elevated levels of checkpoint receptors (e.g., programed cell death 1, PD1) on T cells. Monoclonal antibody (mAb)-based inhibitors to checkpoint receptors have also been shown to enhance T-cell responses in models of chronic infection. Therefore, inhibitors have the potential to act as a vaccine "adjuvant" by facilitating the expansion of vaccine antigen-specific T-cell repertoires. Here, we report the discovery and characterization of a peptide-based class of PD1 checkpoint inhibitors, which have a potent adaptive immunity adjuvant capability for vaccines against infectious diseases. Briefly, after identifying peptides that bind to the recombinant human PD1, we screened for in vitro efficacy in reporter assays and human peripheral blood mononuclear cells (PBMC) readouts. We first found the baseline in vivo performance of the peptides in a standard mouse oncology model that demonstrated equivalent efficacy compared to mAbs against the PD1 checkpoint. Subsequently, two strategies were used to demonstrate the utility of our peptides in infectious disease indications: (1) as a therapeutic in a bacteria-induced lethal sepsis model in which our peptides were found to increase survival with enhanced bacterial clearance and increased macrophage function; and (2) as an adjuvant in combination with a prophylactic malaria vaccine in which our peptides increased T-cell immunogenicity and the protective efficacy of the vaccine. Therefore, our peptides are promising as both a therapeutic agent and a vaccine adjuvant for infectious disease with a potentially safer and more cost-effective target product profile compared to mAbs. These findings are essential for deploying a new immunomodulatory regimen in infectious disease primary and clinical care settings.


Assuntos
Doenças Transmissíveis/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Macrófagos Peritoneais/imunologia , Melanoma/imunologia , Peptídeos/uso terapêutico , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/imunologia , Adjuvantes Imunológicos , Animais , Doenças Transmissíveis/terapia , Humanos , Células Jurkat , Melanoma Experimental , Camundongos , Biblioteca de Peptídeos , Peptídeos/síntese química , Ligação Proteica , Vacinas
17.
Mol Ther ; 16(1): 52-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17998900

RESUMO

Myxoma virus (MV) is a rabbit-specific poxvirus, whose unexpected tropism to human cancer cells has led to studies exploring its potential use in oncolytic therapy. MV infects a wide range of human cancer cells in vitro, in a manner intricately linked to the cellular activation of Akt kinase. MV has also been successfully used for treating human glioma xenografts in immunodeficient mice. This study examines the effectiveness of MV in treating primary and metastatic mouse tumors in immunocompetent C57BL6 mice. We have found that several mouse tumor cell lines, including B16 melanomas, are permissive to MV infection. B16F10 cells were used for assessing MV replication and efficacy in syngeneic primary tumor and metastatic models in vivo. Multiple intratumoral injections of MV resulted in dramatic inhibition of tumor growth. Systemic administration of MV in a lung metastasis model with B16F10LacZ cells was dramatically effective in reducing lung tumor burden. Combination therapy of MV with rapamycin reduced both size and number of lung metastases, and also reduced the induced antiviral neutralizing antibody titres, but did not affect tumor tropism. These results show MV to be a promising virotherapeutic agent in immunocompetent animal tumor models, with good efficacy in combination with rapamycin.


Assuntos
Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Melanoma Experimental/terapia , Melanoma Experimental/virologia , Myxoma virus , Terapia Viral Oncolítica , Adjuvantes Farmacêuticos/uso terapêutico , Animais , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/virologia , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Myxoma virus/efeitos dos fármacos , Myxoma virus/genética , Terapia Viral Oncolítica/métodos , Coelhos , Sirolimo/uso terapêutico
18.
Cancer Res ; 67(18): 8818-27, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17875723

RESUMO

We have shown previously the oncolytic potential of myxoma virus in a murine xenograft model of human glioma. Here, we show that myxoma virus used alone or in combination with rapamycin is effective and safe when used in experimental models of medulloblastoma in vitro and in vivo. Nine of 10 medulloblastoma cell lines tested were susceptible to lethal myxoma virus infection, and pretreatment of cells with rapamycin increased the extent of in vitro oncolysis. Intratumoral injection of live myxoma virus when compared with control inactivated virus prolonged survival in D341 and Daoy orthotopic human medulloblastoma xenograft mouse models [D341 median survival: 21 versus 12.5 days; P = 0.0008; Daoy median survival: not reached (three of five mice apparently "cured" after 223 days) versus 75 days; P = 0.0021]. Rapamycin increased the extent of viral oncolysis, "curing" most Daoy tumor-bearing mice and reducing or eliminating spinal cord and ventricle metastases. Rapamycin enhanced tumor-specific myxoma virus replication in vivo and prolonged survival of D341 tumor-bearing mice (median survival of mice treated with live virus (LV) and rapamycin, versus LV alone, versus rapamycin alone, versus inactivated virus: 25 days versus 19, 13, and 11 days, respectively; P < 0.0001). Rapamycin increased the levels of constitutively activated Akt in Daoy and D341 cells, which may explain its ability to enhance myxoma virus oncolysis. These observations suggest that myxoma virus may be an effective oncolytic agent against medulloblastoma and that combination therapy with signaling inhibitors that modulate activity of the phosphatidylinositol 3-kinase/Akt pathway will further enhance the oncolytic potential of myxoma virus.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Meduloblastoma/terapia , Myxoma virus/fisiologia , Terapia Viral Oncolítica/métodos , Sirolimo/farmacologia , Animais , Terapia Combinada , Ativação Enzimática/efeitos dos fármacos , Humanos , Injeções Intralesionais , Meduloblastoma/tratamento farmacológico , Meduloblastoma/virologia , Camundongos , Camundongos Nus , Células NIH 3T3 , Metástase Neoplásica , Proteína Oncogênica v-akt/metabolismo , Replicação Viral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
NPJ Vaccines ; 4: 6, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774997

RESUMO

Anthrax is a serious biological threat caused by pulmonary exposure to aerosolized spores of Bacillus anthracis. Biothrax® (anthrax vaccine adsorbed (AVA)) is the only Food and Drug Administration-licensed vaccine and requires five administrations over 12 months with annual boosting to maintain pre-exposure prophylaxis. Here we report the evaluation of a single intramuscular injection of recombinant B. anthracis-protective antigen (rPA) formulated in the DPX delivery platform. Immune responses were compared to an alum-based formulation in mice and rabbits. Serological analysis of anti-rPA immunoglobulin G and toxin neutralization activity demonstrated higher responses induced by DPX-rPA when compared to rPA in alum. DPX-rPA was compared to AVA in rabbits and non-human primates (NHPs). In both species, DPX-rPA generated responses after a single immunization, whereas AVA required two immunizations. In rabbits, single injection of DPX-rPA or two injections of AVA conferred 100% protection from anthrax challenge. In NHPs, single-dose DPX-rPA was 100% protective against challenge, whereas one animal in the two-dose AVA group and all saline administered animals succumbed to infection. DPX-rPA was minimally reactogenic in all species tested. These data indicate that DPX-rPA may offer improvement over AVA by reducing the doses needed for protective immune responses and is a promising candidate as a new-generation anthrax vaccine.

20.
Ann Surg Oncol ; 15(8): 2329-35, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18454298

RESUMO

BACKGROUND: Viral oncolytic therapy, which seeks to exploit the use of live viruses to treat cancer, has shown promise in the treatment of cancers resistant to conventional anticancer therapies. Among the most difficult to treat cancers is advanced pancreatic adenocarcinoma. Our study investigates the ability of a novel oncolytic agent, myxoma virus, to infect, productively replicate in, and kill human pancreatic cancer cells in vitro. METHODS: The myxoma virus vMyxgfp was tested against a panel of human pancreatic adenocarcinoma cell lines. Infectivity, viral proliferation, and tumor cell kill were assessed. RESULTS: Infection of tumor cells was assessed by expression of the marker gene enhanced green fluorescent protein (e-GFP). vMyxgfp had the ability to infect all pancreatic cancer cell lines tested. Killing of tumor cells varied among the 6 cell lines tested, ranging from >90% cell kill at 7 days for the most sensitive Panc-1 cells, to 39% in the most resistant cell line Capan-2. Sensitivity correlated to replication of virus, and was found to maximally exhibit a four-log increase in foci-forming units for the most sensitive Panc-1 cells within 72 h. CONCLUSION: Our study demonstrates for the first time the ability of the myxoma virus to productively infect, replicate in, and lyse human pancreatic adenocarcinoma cells in vitro. These data encourage further investigation of this virus, which is pathogenic only in rabbits, for treatment of this nearly uniformly fatal cancer.


Assuntos
Adenocarcinoma/terapia , Myxoma virus/fisiologia , Terapia Viral Oncolítica , Neoplasias Pancreáticas/terapia , Adenocarcinoma/virologia , Animais , Linhagem Celular Tumoral , Humanos , Técnicas In Vitro , Neoplasias Pancreáticas/virologia , Coelhos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa