Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurosci ; 43(28): 5158-5171, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37217307

RESUMO

Alcohol use disorder is complex and multifaceted, involving the coordination of multiple signaling systems across numerous brain regions. Previous work has indicated that both the insular cortex and dynorphin (DYN)/kappa opioid receptor (KOR) systems contribute to excessive alcohol use. More recently, we identified a microcircuit in the medial aspect of the insular cortex that signals through DYN/KOR. Here, we explored the role of insula DYN/KOR circuit components on alcohol intake in a long-term intermittent access (IA) procedure. Using a combination of conditional knock-out strategies and site-directed pharmacology, we discovered distinct and sex-specific roles for insula DYN and KOR in alcohol drinking and related behavior. Our findings show that insula DYN deletion blocked escalated consumption and decreased the overall intake of and preference for alcohol in male and female mice. This effect was specific to alcohol in male mice, as DYN deletion did not impact sucrose intake. Further, insula KOR antagonism reduced alcohol intake and preference during the early phase of IA in male mice only. Alcohol consumption was not affected by insula KOR knockout in either sex. In addition, we found that long-term IA decreased the intrinsic excitability of DYN and deep layer pyramidal neurons (DLPNs) in the insula of male mice. Excitatory synaptic transmission was also impacted by IA, as it drove an increase in excitatory synaptic drive in both DYN neurons and DLPNs. Combined, our findings suggest there is a dynamic interplay between excessive alcohol consumption and insula DYN/KOR microcircuitry.SIGNIFICANCE STATEMENT The insular cortex is a complex region that serves as an integratory hub for sensory inputs. In our previous work, we identified a microcircuit in the insula that signals through the kappa opioid receptor (KOR) and its endogenous ligand dynorphin (DYN). Both the insula and DYN/KOR systems have been implicated in excessive alcohol use and alcohol use disorder (AUD). Here, we use converging approaches to determine how insula DYN/KOR microcircuit components contribute to escalated alcohol consumption. Our findings show that insula DYN/KOR systems regulate distinct phases of alcohol consumption in a sex-specific manner, which may contribute to the progression to AUD.


Assuntos
Alcoolismo , Receptores Opioides kappa , Feminino , Camundongos , Masculino , Animais , Receptores Opioides kappa/metabolismo , Dinorfinas/metabolismo , Córtex Insular , Consumo de Bebidas Alcoólicas , Etanol
2.
Mol Psychiatry ; 26(6): 2187-2199, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32099099

RESUMO

Excessive alcohol drinking has been shown to modify brain circuitry to predispose individuals for future alcohol abuse. Previous studies have implicated the central nucleus of the amygdala (CeA) as an important site for mediating the somatic symptoms of withdrawal and for regulating alcohol intake. In addition, recent work has established a role for both the Kappa Opioid Receptor (KOR) and its endogenous ligand dynorphin in mediating these processes. However, it is unclear whether these effects are due to dynorphin or KOR arising from within the CeA itself or other input brain regions. To directly examine the role of preprodynorphin (PDYN) and KOR expression in CeA neurons, we performed region-specific conditional knockout of these genes and assessed the effects on the Drinking in the Dark (DID) and Intermittent Access (IA) paradigms. Conditional gene knockout resulted in sex-specific responses wherein PDYN knockout decreased alcohol drinking in both male and female mice, whereas KOR knockout decreased drinking in males only. We also found that neither PDYN nor KOR knockout protected against anxiety caused by alcohol drinking. Lastly, a history of alcohol drinking did not alter synaptic transmission in PDYN neurons in the CeA of either sex, but excitability of PDYN neurons was increased in male mice only. Taken together, our findings indicate that PDYN and KOR signaling in the CeA plays an important role in regulating excessive alcohol consumption and highlight the need for future studies to examine how this is mediated through downstream effector regions.


Assuntos
Alcoolismo , Núcleo Central da Amígdala , Consumo de Bebidas Alcoólicas/genética , Animais , Núcleo Central da Amígdala/metabolismo , Dinorfinas/genética , Dinorfinas/metabolismo , Feminino , Masculino , Camundongos , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo
3.
Alcohol Clin Exp Res ; 46(8): 1616-1629, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35797227

RESUMO

BACKGROUND: Alcohol withdrawal is a key component of severe alcohol use disorder. Animal models of alcohol withdrawal tend to focus on traditional anxiety/stress tests. While these have been essential to advancing our understanding of the biology of alcohol withdrawal, abrupt cessation of drinking following heavy alcohol consumption can also trigger withdrawal-related affective states that impact responses to a variety of life events and stressors. To this end, we show that behaviors in a variety of tasks that differ in task demand and intensity are altered during withdrawal in male and female mice after voluntary alcohol access. METHODS: Male and female miceunderwent six weeks of intermittent two-bottle choice alcohol exposure followed by behavioral tests. The tests included-Home cage: low-stress baseline environment to measure spontaneous natural behaviors; Open field: anxiety-inducing bright novel environment; Looming disc: arena with a protective hut where mice are exposed to a series of discs that mimic an overhead advancing predator, and Robogator-simulated predator task: forced foraging behavioral choice in the presence of an advancing robot predator that "attacks" when mice are near a food pellet in a large open arena. RESULTS: A history of alcohol exposure impacted behaviors in these tasks in a sex-dependent manner. In the home cage, alcohol induced reductions in digging and heightened stress coping through an increase in grooming time. In males, increased rearing yielded greater vigilance/exploration in a familiar environment. The open-field test revealed an anxiety phenotype in both male and female mice exposed to alcohol. Male mice showed no behavioral alterations to the looming disc task, while females exposed to alcohol showed greater escape responses than water controls, indicative of active stress-response behaviors. In males, the Robogator task revealed a hesitant/avoidant phenotype in alcohol-exposed mice under greater task demands. CONCLUSIONS: Few drugs show robust evidence of efficacy in clinical trials for alcohol withdrawal. Understanding how withdrawal alters a variety of behaviors in both males and females that are linked to stress coping can increase our understanding of alcohol misuse and aid in developing better medications for treating individuals with AUD.


Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/psicologia , Animais , Ansiedade , Etanol/farmacologia , Feminino , Masculino , Camundongos , Síndrome de Abstinência a Substâncias/psicologia
4.
Brain Commun ; 4(2): fcac042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282165

RESUMO

The accumulation of α-synuclein inclusions in vulnerable neuronal populations pathologically defines Lewy body diseases including Parkinson's disease. Recent pre-clinical studies suggest poly(ADP-ribose) polymerase-1 activation and the subsequent generation of poly(ADP-ribose) polymer represent key steps in the formation of toxic α-synuclein aggregates and neurodegeneration. Several studies suggest that the inhibition of poly(ADP-ribose) polymerase-1 activity via the poly(ADP-ribose) polymerase-1/2 small molecule inhibitor ABT-888 (Veliparib), a drug in clinical trials for different cancers, may prevent or ameliorate α-synuclein fibril-induced aggregation, inclusion formation and dopaminergic neurodegeneration. Herein, we evaluated the effects of poly(ADP-ribose) polymer on α-synuclein fibrillization in vitro, the effects of ABT-888 on the formation of fibril-seeded α-synuclein inclusions in primary mouse cortical neurons and the effects of an in-diet ABT-888 dosage regimen with the intracranial injection of α-synuclein fibrils into the mouse dorsal striatum. We found that poly(ADP-ribose) polymer minimally but significantly increased the rate of spontaneously formed α-synuclein fibrils in vitro. Machine-learning algorithms that quantitatively assessed α-synuclein inclusion counts in neurons, both in primary cultures and in the brains of fibril-injected mice, did not reveal differences between ABT-888- and vehicle-treated groups. The in-diet administered ABT-888 molecule demonstrated outstanding brain penetration in mice; however, dopaminergic cell loss in the substantia nigra caused by α-synuclein fibril injections in the striatum was similar between ABT-888- and vehicle-treated groups. α-Synuclein fibril-induced loss of dopaminergic fibres in the dorsal striatum was also similar between ABT-888- and vehicle-treated groups. We conclude that additional pre-clinical evaluation of ABT-888 may be warranted to justify further exploration of ABT-888 for disease modification in Lewy body diseases.

5.
Elife ; 92020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32692311

RESUMO

Maladaptive responses to stress are a hallmark of alcohol use disorder, but the mechanisms that underlie this are not well characterized. Here, we show that kappa opioid receptor signaling in the bed nucleus of the stria terminalis (BNST) is a critical molecular substrate underlying abnormal stress responses to predator odor following heavy alcohol drinking. Exposure to predator odor during protracted withdrawal from intermittent alcohol drinking resulted in enhanced prefrontal cortex (PFC)-driven excitation of prodynorphin-containing neurons in the BNST. Furthermore, deletion of prodynorphin in the BNST and chemogenetic inhibition of the PFC-BNST pathway restored abnormal responses to predator odor in alcohol-exposed mice. These findings suggest that increased corticolimbic drive may promote abnormal stress behavioral responses to predator odor during protracted withdrawal. Various nodes of this PFC-BNST dynorphin-related circuit may serve as potential targets for potential therapeutic mediation as well as biomarkers of negative responses to stress following heavy alcohol drinking.


The connection between stress and alcohol use is highly complex. On one hand, there is the idea of having a drink to 'steady the nerves'. On the other hand, in alcoholics, abnormal responses to stress often accompany heavy drinking. In this case, it remains unknown whether stress cause excessive drinking, or vice versa. Areas of the brain that normally help respond to stress work differently in long-term, heavy drinkers. One example is a structure called the bed nucleus of the stria terminalis (BNST), which is over-active in anxiety disorders and is also associated with some of the symptoms of alcohol withdrawal. The mechanism behind both problems is thought to be a specific 'signaling system' that is activated by a small molecule called dynorphin. Previous research into the effects of dynorphin was performed either in the context of alcoholism or of anxiety disorders, but it was not known if there was a connection between the two. Therefore, Hwa et al. wanted to determine how prolonged alcohol use might affect responses to stress, and whether dynorphin signaling plays a role. To model long-term alcohol use in the laboratory, a group of mice was given free access to alcohol every other day, ensuring that they developed the mouse equivalent of a drinking habit. After six weeks, these 'heavy drinkers' went through a period of abstinence, mimicking alcohol withdrawal. Then, the mice were stressed by exposing them to a chemical that smelled like a fox, one of the mice's predators in the wild. When mice smell predators, they normally respond by fleeing from the area and digging up debris to defend itself. As expected, the control mice in this study, which did not drink alcohol, did just that. In contrast, the heavy drinkers largely ignored the predator scent by not digging and even spent time hanging around the area that smelled like the predator. Blocking dynorphin-induced signaling in the alcoholic mice, either using a drug or by deleting the gene that codes for dynorphin, reset the stress response to normal, allowing these mice to avoid the predator and dig as normal. Furthermore, measuring the electrical activity in the brain revealed that the BNST was abnormally active in alcohol-drinking mice, driven by signals from another part of the brain, the prefrontal cortex. This reveals part of the circuitry in the brain responsible for the connection between alcohol withdrawal and the stress response. These results shed new light on the biological mechanisms underpinning the relationship between alcohol use and stress. In the future, these could be used to determine why heavy drinking can overlap with anxiety disorders, or to develop new treatments that would help recovering alcoholics cope better with stress.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/fisiopatologia , Etanol/efeitos adversos , Odorantes , Receptores Opioides kappa/efeitos dos fármacos , Receptores Opioides kappa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
6.
Neuron ; 102(5): 1037-1052.e7, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31029403

RESUMO

Food palatability is one of many factors that drives food consumption, and the hedonic drive to feed is a key contributor to obesity and binge eating. In this study, we identified a population of prepronociceptin-expressing cells in the central amygdala (PnocCeA) that are activated by palatable food consumption. Ablation or chemogenetic inhibition of these cells reduces palatable food consumption. Additionally, ablation of PnocCeA cells reduces high-fat-diet-driven increases in bodyweight and adiposity. PnocCeA neurons project to the ventral bed nucleus of the stria terminalis (vBNST), parabrachial nucleus (PBN), and nucleus of the solitary tract (NTS), and activation of cell bodies in the central amygdala (CeA) or axons in the vBNST, PBN, and NTS produces reward behavior but did not promote feeding of palatable food. These data suggest that the PnocCeA network is necessary for promoting the reinforcing and rewarding properties of palatable food, but activation of this network itself is not sufficient to promote feeding.


Assuntos
Núcleo Central da Amígdala/metabolismo , Comportamento Alimentar/fisiologia , Neurônios/metabolismo , Precursores de Proteínas/metabolismo , Receptores Opioides/metabolismo , Recompensa , Adiposidade , Animais , Peso Corporal , Núcleo Central da Amígdala/fisiologia , Dieta Hiperlipídica , Camundongos , Vias Neurais , Neurônios/fisiologia , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiologia , Técnicas de Patch-Clamp , Precursores de Proteínas/genética , Receptores Opioides/genética , Núcleos Septais/metabolismo , Núcleos Septais/fisiologia , Núcleo Solitário/metabolismo , Núcleo Solitário/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa