Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Glob Chang Biol ; 30(2): e17189, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38375686

RESUMO

Terrestrial ecosystems affect climate by reflecting solar irradiation, evaporative cooling, and carbon sequestration. Yet very little is known about how plant traits affect climate regulation processes (CRPs) in different habitat types. Here, we used linear and random forest models to relate the community-weighted mean and variance values of 19 plant traits (summarized into eight trait axes) to the climate-adjusted proportion of reflected solar irradiation, evapotranspiration, and net primary productivity across 36,630 grid cells at the European extent, classified into 10 types of forest, shrubland, and grassland habitats. We found that these trait axes were more tightly linked to log evapotranspiration (with an average of 6.2% explained variation) and the proportion of reflected solar irradiation (6.1%) than to net primary productivity (4.9%). The highest variation in CRPs was explained in forest and temperate shrubland habitats. Yet, the strength and direction of these relationships were strongly habitat-dependent. We conclude that any spatial upscaling of the effects of plant communities on CRPs must consider the relative contribution of different habitat types.


Assuntos
Ecossistema , Pradaria , Plantas , Clima , Processos Climáticos , Biodiversidade
2.
J Environ Manage ; 274: 111140, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32795814

RESUMO

Invasive alien plants are a major threat to biodiversity and they contribute to the unfavourable conservation status of habitats of interest to the European Community. In order to favour implementation of European Union Regulation no. 1143/2014 on invasive alien species, the Italian Society of Vegetation Science carried out a large survey led by a task force of 49 contributors with expertise in vegetation across all the Italian administrative regions. The survey summed up the knowledge on impact mechanisms of invasive alien plants in Italy and their outcomes on plant communities and the EU habitats of Community Interest, in accordance with Directive no. 92/43/EEC. The survey covered 241 alien plant species reported as having deleterious ecological impacts. The data collected illustrate the current state of the art, highlight the main gaps in knowledge, and suggest topics to be further investigated. In particular, the survey underlined competition as being the main mechanism of ecological impact on plant communities and Natura 2000 habitats. Of the 241 species, only Ailanthus altissima was found to exert an ecological impact on plant communities and Natura 2000 habitats in all Italian regions; while a further 20 species impact up to ten out of the 20 Italian administrative regions. Our data indicate that 84 out of 132 Natura 2000 Habitats (64%) are subjected to some degree of impact by invasive alien plants. Freshwater habitats and natural and semi-natural grassland formations were impacted by the highest number of alien species, followed by coastal sand dunes and inland dunes, and forests. Although not exhaustive, this research is the first example of nationwide evaluation of the ecological impacts of invasive alien plants on plant communities and Natura 2000 Habitats.


Assuntos
Ecossistema , Espécies Introduzidas , Biodiversidade , Itália , Plantas
3.
Biol Invasions ; 26(11): 3879-3899, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39324107

RESUMO

Invasive alien species represent a major threat to global biodiversity and the sustenance of ecosystems. Globally, mountain ecosystems have shown a degree of resistance to invasive species due to their distinctive ecological features. However, in recent times, the construction of linear infrastructure, such as roads, might weaken this resistance, especially in the Mediterranean basin region. Roads, by acting as efficient corridors, facilitate the dispersal of alien species along elevation gradients in mountains. Here, we investigated how the ecological features and road-associated disturbance in native plant communities affected both the occurrence and cover of alien plant species in Central Apennines (Italy). We implemented the MIREN road survey in three mountain transects conducting vegetation sampling in plots located both adjacent to and distant from the roads at intervals of ~ 100 m in elevation. We then used community-weighted means of Ecological Indicator Values for Europe together with Disturbance Indicator Values applied to plant species of native communities as predictors of alien species occurrence and cover in a machine-learning classification and regression framework. Our analyses showed that alien species' occurrence was greater in proximity to the road where high soil disturbance occurred and in warm- and light-adapted native communities. On the other hand, alien species cover was more strongly related to moderate grazing pressure and the occurrence of nitrophilic plant communities. These findings provide a baseline for the current status of alien plant species in this Mediterranean mountain region, offering an ecological perspective to address the challenges associated with their management under global change. Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-024-03418-y.

4.
Nat Commun ; 14(1): 712, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759605

RESUMO

Ecological theory predicts close relationships between macroclimate and functional traits. Yet, global climatic gradients correlate only weakly with the trait composition of local plant communities, suggesting that important factors have been ignored. Here, we investigate the consistency of climate-trait relationships for plant communities in European habitats. Assuming that local factors are better accounted for in more narrowly defined habitats, we assigned > 300,000 vegetation plots to hierarchically classified habitats and modelled the effects of climate on the community-weighted means of four key functional traits using generalized additive models. We found that the predictive power of climate increased from broadly to narrowly defined habitats for specific leaf area and root length, but not for plant height and seed mass. Although macroclimate generally predicted the distribution of all traits, its effects varied, with habitat-specificity increasing toward more narrowly defined habitats. We conclude that macroclimate is an important determinant of terrestrial plant communities, but future predictions of climatic effects must consider how habitats are defined.


Assuntos
Ecossistema , Plantas , Europa (Continente) , Sementes
5.
AoB Plants ; 12(2): plaa004, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32257089

RESUMO

Mediterranean high mountain grasslands are shaped by climatic stress and understanding their functional adaptations can contribute to better understanding ecosystems' response to global change. The present work analyses the plant functional traits of high-elevation grasslands growing in Mediterranean limestone mountains to explore, at the community level, the presence of different plant strategies for resource use (conservative vs. acquisitive) and functional diversity syndromes (convergent or divergent). Thus, we compared the functional composition and diversity of the above-ground traits related to resource acquisition strategies of subalpine and alpine calcareous grasslands in the central Apennines, a mountain region characterized by a dry-summer Mediterranean climate. We used georeferenced vegetation plots and field-measured plant functional traits (plant maximum height, specific leaf area and leaf dry matter content) for the dominant species of two characteristic vegetation types: the subalpine Sesleria juncifolia community and the alpine Silene acaulis community. Both communities are of particular conservation concern and are rich in endemic species for which plant functional traits are measured here for the first time. We analysed the functional composition and diversity using the community-weighted mean trait index and the functional diversity using Rao's function, and we assessed how much the observed pattern deviated from a random distribution by calculating the respective standardized effect sizes. The results highlighted that an acquisitive resource use strategy and relatively higher functional diversity of leaf traits prevail in the alpine S. acaulis community, optimizing a rapid carbon gain, which would help overcome the constraints exerted by the short growing season. The divergent functional strategy underlines the co-occurrence of different leaf traits in the alpine grasslands, which shows good adaptation to a microhabitat-rich environment. Conversely, in the subalpine S. juncifolia grassland, a conservative resource use strategy and relatively lower functional diversity of the leaf traits are likely related to a high level resistance to aridity over a longer growing season. Our outcomes indicate the preadaptation strategy of the subalpine S. juncifolia grassland to shift upwards to the alpine zone that will become warmer and drier as a result of anthropogenic climate change.

6.
Sci Total Environ ; 668: 1139-1155, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31018454

RESUMO

Coastal sand dunes are complex transitional systems hosting high levels of biodiversity and providing important benefits to society. In this paper we aimed to evaluate the multi-service nature of ecosystem services (ES) supply in the dunes of the Italian Adriatic coast within Natura 2000 (N2K) sites. We i) identified ES indicators and assessed the supply capacity (Climate regulation, Protection from wind and aerosol, Erosion regulation, Recreation and Tourism and Existence value of biodiversity) of natural dune ecosystems of European conservation concern; ii) upscaled this data to create an inventory of ES supply for all dune N2K sites in the study area; iii) explored the trade-offs among ES; and iv) summarized and spatially compared the overall multi-service value of the N2K sites. The study provides a method for quantifying the role of N2K sites in supplying benefits for our society. We found that the multi-service capacity of coastal dunes is uneven within sites and within administrative regions. This variability is related to both ecological (e.g. distribution, ecological integrity, extent and conservation status of dune habitats) and administrative (e.g. local implementation of the Habitats Directive) characteristics of the analysed area. ES are not coupled as several sites with high values for one ES show very low values for others. The results suggest that conservation actions should favour restoration of the natural dune zonation, since this underpins multi-service ES supply. The approach can distinguish regions with high ES values and regions where the paucity of protected areas represents a gap in ES supply, fact that offers an incentive to enhance the protection strategy but also suggests an urgent need to improve the N2K network by enlarging existent sites and including new ones.

7.
AoB Plants ; 82016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26819258

RESUMO

High-mountain ecosystems are increasingly threatened by climate change, causing biodiversity loss, habitat degradation and landscape modifications. However, very few detailed studies have focussed on plant biodiversity in the high mountains of the Mediterranean. In this study, we investigated the long-term changes that have occurred in the composition, structure and ecology of high-mountain vegetation in the central Apennines (Majella) over the last 42 years. We performed a re-visitation study, using historical and newly collected vegetation data to explore which ecological and structural features have been the most successful in coping with climatic changes. Vegetation changes were analysed by comparing geo-referenced phytosociological relevés collected in high-mountain habitats (dolines, gentle slopes and ridges) on the Majella massif in 1972 and in 2014. Composition analysis was performed by detrended correspondence analysis, followed by an analysis of similarities for statistical significance assessment and by similarity percentage procedure (SIMPER) for identifying which species indicate temporal changes. Changes in ecological and structural indicators were analysed by a permutational multivariate analysis of variance, followed by a post hoc comparison. Over the last 42 years, clear floristic changes and significant ecological and structural variations occurred. We observed a significant increase in the thermophilic and mesonitrophilic plant species and an increment in the frequencies of hemicryptophytes. This re-visitation study in the Apennines agrees with observations in other alpine ecosystems, providing new insights for a better understanding of the effects of global change on Mediterranean high-mountain biodiversity. The observed changes in floristic composition, the thermophilization process and the shift towards a more nutrient-demanding vegetation are likely attributable to the combined effect of higher temperatures and the increase in soil nutrients triggered by global change. The re-visitation approach adopted herein represents a powerful tool for studying climate-related changes in sensitive high-mountain habitats.

8.
C R Biol ; 338(5): 343-50, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25843221

RESUMO

In this study, we explored if, how, and when the European Union habitats (EU sensu Habitats Directive 92/43/CEE) are used by the flagship species Testudo hermanni in a well-preserved coastal dune system of the Italian peninsula. Radio telemetry data and fine-scale vegetation habitat mapping were used to address the following questions: (a) is each EU habitat used differentially by Hermann's tortoises? (b) is there any seasonal variation in this utilization pattern? (c) how does each habitat contribute to the ecological requirements of the tortoises? Nine tortoises were fitted with transmitters and monitored for the entire season of activity. The eight EU habitats present in the study area were surveyed and mapped using GIS. The seasonal preferential use or avoidance of each habitat was tested by comparing, through bootstrap tests, the proportion of habitat occupied (piTh) with the proportion of available habitat in the entire landscape (piL). The analysis of 340 spatial locations showed a marked preference for the Cisto-Lavanduletalia dune sclerophyllous scrubs (EU code 2260) and a seasonal selection of Juniperus macrocarpa bushes (EU code 2250(*)), wooded dunes with Pinus (EU code 2270) and mosaic of dune grasslands and sclerophyllous scrubs (EU codes 2230, 2240, 2260). Seasonal variation of habitat preference was interpreted in light of the different feeding, thermoregulation and reproductive needs of the tortoises. Our results stress the ecological value of EU coastal dune habitats and suggest prioritization of conservation efforts in these ecosystems.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Estações do Ano , Tartarugas/fisiologia , Animais , União Europeia , Mapeamento Geográfico , Itália , Plantas , Poaceae , Telemetria
9.
AoB Plants ; 72015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25750408

RESUMO

Coastal sandy ecosystems are increasingly being threatened by human pressure, causing loss of biodiversity, habitat degradation and landscape modifications. However, there are still very few detailed studies focussing on compositional changes in coastal dune plant communities over time. In this work, we investigated how coastal dune European Union (EU) habitats (from pioneer annual beach communities to Mediterranean scrubs on the landward fixed dunes) have changed during the last 20 years. Using phytosociological relevés conducted in 1989-90 and in 2010-12, we investigated changes in floristic composition over time. We then compared plant cover and the proportion of ruderal, alien and habitat diagnostic species ('focal species') in the two periods. Finally, we used Ellenberg indicator values to define the 'preferences' of the plant species for temperature and moisture. We found that only fore dune habitats showed significant differences in species cover between the two time periods, with higher plant cover in the more recent relevés and a significant increase in thermophilic species. Although previous studies have demonstrated consistent habitat loss in this area, we observed that all coastal dune plant communities remain well represented, after a 20-year period. However, fore dunes have been experiencing significant compositional changes. Although we cannot confirm whether the observed changes are strictly related to climatic changes, to human pressure or to both, we hypothesize that a moderate increment in average yearly temperature may have promoted the increase in plant cover and the spread of thermophilic species. Thus, even though human activities are major driving forces of change in coastal dune vegetation, at the community scale climatic factors may also play important roles. Our study draws on re-visitation studies which appear to constitute a powerful tool for the assessment of the conservation status of EU habitats.

10.
C R Biol ; 336(7): 364-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23932256

RESUMO

Alien species can represent a threat to several ecosystems because they can alter species relationships and ecosystem function. In Italy, Acacia saligna is a major invader and it forms dense stands in coastal environments. We analyze the impact of A. saligna in Italian Mediterranean dune systems. We randomly sampled coastal dune vegetation and investigated its floristic composition with ordination techniques. We compared species richness in invaded and non-invaded plots with rarefaction curves and analyzed the frequency of focal and ruderal species. A. saligna invaded Mediterranean scrub (habitats 2250* and 2260) and coastal Pinus dune wood (habitat 2270*) and it is particularly prevalent in sunny areas of habitat 2270*. We observed an increase in ruderal species and a decrease in focal species in the invaded plots of habitat 2270*. We suggest that more open and disturbed areas are more prone to A. saligna invasion.


Assuntos
Acacia/fisiologia , Ecossistema , Espécies Introduzidas , Biodiversidade , Interpretação Estatística de Dados , Itália , Região do Mediterrâneo , Pinus
11.
Science ; 336(6079): 353-5, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22517860

RESUMO

In mountainous regions, climate warming is expected to shift species' ranges to higher altitudes. Evidence for such shifts is still mostly from revisitations of historical sites. We present recent (2001 to 2008) changes in vascular plant species richness observed in a standardized monitoring network across Europe's major mountain ranges. Species have moved upslope on average. However, these shifts had opposite effects on the summit floras' species richness in boreal-temperate mountain regions (+3.9 species on average) and Mediterranean mountain regions (-1.4 species), probably because recent climatic trends have decreased the availability of water in the European south. Because Mediterranean mountains are particularly rich in endemic species, a continuation of these trends might shrink the European mountain flora, despite an average increase in summit species richness across the region.


Assuntos
Altitude , Biodiversidade , Ecossistema , Plantas , Clima , Europa (Continente) , Fenômenos Geológicos
12.
Environ Monit Assess ; 140(1-3): 99-107, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17624597

RESUMO

Many recent developments in coastal science have gone against the demands of European Union legislation. Coastal dune systems which cover small areas of the earth can host a high level of biodiversity. However, human pressure on coastal zones around the world has increased dramatically in the last 50 years. In addition to direct habitat loss, the rapid extinction of many species that are unique to these systems can be attributed to landscape deterioration through the lack of appropriate management. In this paper, we propose to use of an ecosystem classification technique that integrates potential natural vegetation distribution as a reference framework for coastal dune EU Habitats (92/43) distribution analysis and assessment. As an example, the present study analyses the EU Habitats distribution within a hierarchical ecosystem classification of the coastal dune systems of central Italy. In total, 24 land elements belonging to 8 land units, 5 land facets, 2 land systems and 2 land regions were identified for the coastal dunes of central Italy, based on diagnostic land attributes. In central Italy, coastal dune environments including all the beach area, mobile dunes and all the fixed-dune land elements contain or could potentially hold at least one EU habitat of interest. Almost all dune slack transitions present the potentiality for the spontaneous development of EU woodlands of interest. The precise information concerning these ecosystems distribution and ecological relationships that this method produces, makes it very effective in Natura 2000 European network assessment. This hierarchical ecosystem classification method facilitates the identification of areas to be surveyed and eventually bound, under the implementation of EU Habitat directive (92/43) including areas with highly disturbed coastal dune ecosystems.


Assuntos
Ecossistema , União Europeia , Itália
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa