Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Nanotechnology ; 34(5)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36278289

RESUMO

The aryl diazonium salt chemistry offers enhancement of near-infrared (NIR) emission of single-walled carbon nanotubes (SWCNTs), although, the attachment of functional molecules which could bring hybrid properties through the process is underdeveloped. In this work, we utilize aryl diazonium salt of fluorescein to createsp3defects on (6,5) SWCNTs. We study the influence of pH on the grafting process identifying that pH 5-6 is necessary for a successful reaction. The fluorescein-modified (6,5) SWCNTs (F-(6,5) SWCNTs) exhibit red-shiftedE11* emission in the NIR region attributed to luminescentsp3defects, but also visible (Vis) fluorescence at 515 nm from surface-attached fluorescein molecules. The fluorescence in both Vis and NIR regions of F-(6,5) SWCNTs exhibit strong pH-dependency associated with the dissociation of fluorescein molecules with an indication of photoinduced-electron transfer quenching the Vis emission of fluorescein dianion. The F-(6,5) SWCNTs could potentially be used for dual-channel medical imaging as indicated by our preliminary experiments. We hope that our research will encourage new, bold modifications of SWCNTs with functional molecules introducing new, unique hybrid properties.

3.
Circulation ; 141(1): 42-66, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31887080

RESUMO

BACKGROUND: Sporadic aortic aneurysm and dissection (AAD), caused by progressive aortic smooth muscle cell (SMC) loss and extracellular matrix degradation, is a highly lethal condition. Identifying mechanisms that drive aortic degeneration is a crucial step in developing an effective pharmacologic treatment to prevent disease progression. Recent evidence has indicated that cytosolic DNA and abnormal activation of the cytosolic DNA sensing adaptor STING (stimulator of interferon genes) play a critical role in vascular inflammation and destruction. Here, we examined the involvement of this mechanism in aortic degeneration and sporadic AAD formation. METHODS: The presence of cytosolic DNA in aortic cells and activation of the STING pathway were examined in aortic tissues from patients with sporadic ascending thoracic AAD. The role of STING in AAD development was evaluated in Sting-deficient (Stinggt/gt) mice in a sporadic AAD model induced by challenging mice with a combination of a high-fat diet and angiotensin II. We also examined the direct effects of STING on SMC death and macrophage activation in vitro. RESULTS: In human sporadic AAD tissues, we observed the presence of cytosolic DNA in SMCs and macrophages and significant activation of the STING pathway. In the sporadic AAD model, Stinggt/gt mice showed significant reductions in challenge-induced aortic enlargement, dissection, and rupture in both the thoracic and abdominal aortic regions. Single-cell transcriptome analysis revealed that aortic challenge in wild-type mice induced the DNA damage response, the inflammatory response, dedifferentiation and cell death in SMCs, and matrix metalloproteinase expression in macrophages. These changes were attenuated in challenged Stinggt/gt mice. Mechanistically, nuclear and mitochondrial DNA damage in SMCs and the subsequent leak of DNA to the cytosol activated STING signaling, which induced cell death through apoptosis and necroptosis. In addition, DNA from damaged SMCs was engulfed by macrophages in which it activated STING and its target interferon regulatory factor 3, which directly induced matrix metalloproteinase-9 expression. We also found that pharmacologically inhibiting STING activation partially prevented AAD development. CONCLUSIONS: Our findings indicate that the presence of cytosolic DNA and subsequent activation of cytosolic DNA sensing adaptor STING signaling represent a key mechanism in aortic degeneration and that targeting STING may prevent sporadic AAD development.


Assuntos
Dissecção Aórtica/metabolismo , Ruptura Aórtica/metabolismo , Citosol/metabolismo , DNA/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Dissecção Aórtica/genética , Dissecção Aórtica/patologia , Animais , Ruptura Aórtica/genética , Ruptura Aórtica/patologia , Citosol/patologia , DNA/genética , Feminino , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout
4.
Pediatr Radiol ; 44(2): 216-21, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24202430

RESUMO

Three-dimensional printing called rapid prototyping, a technology that is used to create physical models based on a 3-D computer representation, is now commercially available and can be created from CT or MRI datasets. This technical innovation paper reviews the specific requirements and steps necessary to apply biomedical 3-D printing of pediatric musculoskeletal disorders. We discuss its role for the radiologist, orthopedist and patient.


Assuntos
Periféricos de Computador , Desenho Assistido por Computador , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/instrumentação , Modelos Anatômicos , Doenças Musculoesqueléticas/patologia , Criança , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos
5.
medRxiv ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066407

RESUMO

An objective method to identify imminent or current Multi-Inflammatory Syndrome in Children (MIS-C) infected with SARS-CoV-2 is highly desirable. The aims was to define an algorithmically interpreted novel cytokine/chemokine assay panel providing such an objective classification. This study was conducted on 4 groups of patients seen at multiple sites of Texas Children's Hospital, Houston, TX who consented to provide blood samples to our COVID-19 Biorepository. Standard laboratory markers of inflammation and a novel cytokine/chemokine array were measured in blood samples of all patients. Group 1 consisted of 72 COVID-19, 66 MIS-C and 63 uninfected control patients seen between May 2020 and January 2021 and predominantly infected with pre-alpha variants. Group 2 consisted of 29 COVID-19 and 43 MIS-C patients seen between January-May 2021 infected predominantly with the alpha variant. Group 3 consisted of 30 COVID-19 and 32 MIS-C patients seen between August-October 2021 infected with alpha and/or delta variants. Group 4 consisted of 20 COVID-19 and 46 MIS-C patients seen between October 2021-January 2022 infected with delta and/or omicron variants. Group 1 was used to train a L1-regularized logistic regression model which was validated using 5-fold cross validation, and then separately validated against the remaining naïve groups. The area under receiver operating curve (AUROC) and F1-score were used to quantify the performance of the algorithmically interpreted cytokine/chemokine assay panel. Standard laboratory markers predict MIS-C with a 5-fold cross-validated AUROC of 0.86 ± 0.05 and an F1 score of 0.78 ± 0.07, while the cytokine/chemokine panel predicted MIS-C with a 5-fold cross-validated AUROC of 0.95 ± 0.02 and an F1 score of 0.91 ± 0.04, with only sixteen of the forty-five cytokines/chemokines sufficient to achieve this performance. Tested on Group 2 the cytokine/chemokine panel yielded AUROC =0.98, F1=0.93, on Group 3 it yielded AUROC=0.89, F1 = 0.89, and on Group 4 AUROC= 0.99, F1= 0.97). Adding standard laboratory markers to the cytokine/chemokine panel did not improve performance. A top-10 subset of these 16 cytokines achieves equivalent performance on the validation data sets. Our findings demonstrate that a sixteen-cytokine/chemokine panel as well as the top ten subset provides a sensitive, specific method to identify MIS-C in patients infected with SARS-CoV-2 of all the major variants identified to date.

6.
J Clin Med ; 12(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685502

RESUMO

While pediatric COVID-19 is rarely severe, a small fraction of children infected with SARS-CoV-2 go on to develop multisystem inflammatory syndrome (MIS-C), with substantial morbidity. An objective method with high specificity and high sensitivity to identify current or imminent MIS-C in children infected with SARS-CoV-2 is highly desirable. The aim was to learn about an interpretable novel cytokine/chemokine assay panel providing such an objective classification. This retrospective study was conducted on four groups of pediatric patients seen at multiple sites of Texas Children's Hospital, Houston, TX who consented to provide blood samples to our COVID-19 Biorepository. Standard laboratory markers of inflammation and a novel cytokine/chemokine array were measured in blood samples of all patients. Group 1 consisted of 72 COVID-19, 70 MIS-C and 63 uninfected control patients seen between May 2020 and January 2021 and predominantly infected with pre-alpha variants. Group 2 consisted of 29 COVID-19 and 43 MIS-C patients seen between January and May 2021 infected predominantly with the alpha variant. Group 3 consisted of 30 COVID-19 and 32 MIS-C patients seen between August and October 2021 infected with alpha and/or delta variants. Group 4 consisted of 20 COVID-19 and 46 MIS-C patients seen between October 2021 andJanuary 2022 infected with delta and/or omicron variants. Group 1 was used to train an L1-regularized logistic regression model which was tested using five-fold cross validation, and then separately validated against the remaining naïve groups. The area under receiver operating curve (AUROC) and F1-score were used to quantify the performance of the cytokine/chemokine assay-based classifier. Standard laboratory markers predict MIS-C with a five-fold cross-validated AUROC of 0.86 ± 0.05 and an F1 score of 0.78 ± 0.07, while the cytokine/chemokine panel predicted MIS-C with a five-fold cross-validated AUROC of 0.95 ± 0.02 and an F1 score of 0.91 ± 0.04, with only sixteen of the forty-five cytokines/chemokines sufficient to achieve this performance. Tested on Group 2 the cytokine/chemokine panel yielded AUROC = 0.98 and F1 = 0.93, on Group 3 it yielded AUROC = 0.89 and F1 = 0.89, and on Group 4 AUROC = 0.99 and F1 = 0.97. Adding standard laboratory markers to the cytokine/chemokine panel did not improve performance. A top-10 subset of these 16 cytokines achieves equivalent performance on the validation data sets. Our findings demonstrate that a sixteen-cytokine/chemokine panel as well as the top ten subset provides a highly sensitive, and specific method to identify MIS-C in patients infected with SARS-CoV-2 of all the major variants identified to date.

7.
Adv Sci (Weinh) ; 10(10): e2206435, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36721029

RESUMO

The first line of treatment for most solid tumors is surgical resection of the primary tumor with adequate negative margins. Incomplete tumor resections with positive margins account for over 75% of local recurrences and the development of distant metastases. In cases of oral cavity squamous cell carcinoma (OSCC), the rate of successful tumor removal with adequate margins is just 50-75%. Advanced real-time imaging methods that improve the detection of tumor margins can help improve success rates,overall safety, and reduce the cost. Fluorescence imaging in the second near-infrared (NIR-II) window has the potential to revolutionize the field due to its high spatial resolution, low background signal, and deep tissue penetration properties, but NIR-II dyes with adequate in vivo performance and safety profiles are scarce. A novel NIR-II fluorophore, XW-03-66, with a fluorescence quantum yield (QY) of 6.0% in aqueous media is reported. XW-03-66 self-assembles into nanoparticles (≈80 nm) and has a systemic circulation half-life (t1/2 ) of 11.3 h. In mouse models of human papillomavirus (HPV)+ and HPV- OSCC, XW-03-66 outperformed indocyanine green (ICG), a clinically available NIR dye, and enabled intraoperative NIR-II image-guided resection of the tumor and adjacent draining lymph node with negative margins. In vitro and in vivo toxicity assessments revealed minimal safety concerns for in vivo applications.


Assuntos
Neoplasias Bucais , Infecções por Papillomavirus , Camundongos , Animais , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Verde de Indocianina , Corantes Fluorescentes/química , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Bucais/cirurgia
8.
Res Sq ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37886459

RESUMO

ACTA2 pathogenic variants altering arginine 179 cause childhood-onset strokes due to moyamoya disease (MMD)-like occlusion of the distal internal carotid arteries. A smooth muscle cell (SMC)-specific knock-in mouse model (Acta2SMC-R179C/+) inserted the mutation into 67% of aortic SMCs, whereas explanted SMCs were uniformly heterozygous. Acta2R179C/+ SMCs fail to fully differentiate and maintain stem cell-like features, including high glycolytic flux, and increasing oxidative respiration (OXPHOS) with nicotinamide riboside (NR) drives the mutant SMCs to differentiate and decreases migration. Acta2SMC-R179C/+ mice have intraluminal MMD-like occlusive lesions and strokes after carotid artery injury, whereas the similarly treated WT mice have no strokes and patent lumens. Treatment with NR prior to the carotid artery injury attenuates the strokes, MMD-like lumen occlusions, and aberrant vascular remodeling in the Acta2SMC-R179C/+ mice. These data highlight the role of immature SMCs in MMD-associated occlusive disease and demonstrate that altering SMC metabolism to drive quiescence of Acta2R179C/+ SMCs attenuates strokes and aberrant vascular remodeling in the Acta2SMC-R179C/+ mice.

9.
J Struct Biol ; 178(2): 121-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22433493

RESUMO

The molecular graphics program Sculptor and the command-line suite Situs are software packages for the integration of biophysical data across spatial resolution scales. Herein, we provide an overview of recently developed tools relevant to cryo-electron tomography (cryo-ET), with an emphasis on functionality supported by Situs 2.7.1 and Sculptor 2.1.1. We describe a work flow for automatically segmenting filaments in cryo-ET maps including denoising, local normalization, feature detection, and tracing. Tomograms of cellular actin networks exhibit both cross-linked and bundled filament densities. Such filamentous regions in cryo-ET data sets can then be segmented using a stochastic template-based search, VolTrac. The approach combines a genetic algorithm and a bidirectional expansion with a tabu search strategy to localize and characterize filamentous regions. The automated filament segmentation by VolTrac compares well to a manual one performed by expert users, and it allows an efficient and reproducible analysis of large data sets. The software is free, open source, and can be used on Linux, Macintosh or Windows computers.


Assuntos
Microscopia Crioeletrônica/métodos , Citoesqueleto/fisiologia , Tomografia com Microscopia Eletrônica/métodos , Algoritmos , Modelos Moleculares , Software
10.
ChemMedChem ; 17(2): e202100611, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34704363

RESUMO

The development of imaging agents for in vivo detection of alpha-synuclein (α-syn) pathologies faces several challenges. A major gap in the field is the lack of diverse molecular scaffolds with high affinity and selectivity to α-syn fibrils for in vitro screening assays. Better in vitro scaffolds can instruct the discovery of better in vivo agents. We report the rational design, synthesis, and in vitro evaluation of a series of novel 1-indanone and 1,3-indandione derivatives from a Structure-Activity Relationship (SAR) study centered on some existing α-syn fibril binding ligands. Our results from fibril saturation binding experiments show that two of the lead candidates compounds 8 and 32 bind α-syn fibrils with binding constants (Kd ) of 9.0 and 18.8 nM, respectively, and selectivity of greater than 10× for α-syn fibrils compared with amyloid-ß (Aß) and tau fibrils. Our results demonstrate that the lead ligands avidly label all forms of α-syn on PD brain tissue sections, but only the dense core of senile plaques in AD brain tissue, respectively. These results are corroborated by ligand-antibody colocalization data from Syn211, which shows immunoreactivity toward all forms of α-syn aggregates, and Syn303, which displays preferential reactivity toward mature Lewy pathology. Our results reveal that 1-indanone derivatives have desirable properties for the biological evaluation of α-synucleinopathies.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Indanos/farmacologia , Fármacos Neuroprotetores/farmacologia , alfa-Sinucleína/antagonistas & inibidores , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Indanos/síntese química , Indanos/química , Ligantes , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Agregados Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Relação Estrutura-Atividade , alfa-Sinucleína/metabolismo
11.
Front Physiol ; 13: 846404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295566

RESUMO

Moyamoya disease (MMD) is a progressive steno-occlusive cerebrovascular disease leading to recurrent stroke. There is a lack of reliable biomarkers to identify unilateral stroke MMD patients who are likely to progress to bilateral disease and experience subsequent contralateral stroke(s). We hypothesized that local hemodynamics are predictive of future stroke and set out to noninvasively assess this stroke risk in pediatric MMD patients. MR and X-ray angiography imaging were utilized to reconstruct patient-specific models of the circle of Willis of six pediatric MMD patients who had previous strokes, along with a control subject. Blood flow simulations were performed by using a Navier-Stokes solver within an isogeometric analysis framework. Vascular regions with a wall shear rate (WSR) above the coagulation limit (>5,000 s-1) were identified to have a higher probability of thrombus formation, potentially leading to ischemic stroke(s). Two metrics, namely, "critical WSR coverage" and "WSR score," were derived to assess contralateral stroke risk and compared with clinical follow-up data. In two patients that suffered a contralateral stroke within 2 months of the primary stroke, critical WSR coverages exceeding 50% of vessel surface and WSR scores greater than 6× the control were present in multiple contralateral vessels. These metrics were not as clearly indicative of stroke in two additional patients with 3-5 year gaps between primary and contralateral strokes. However, a longitudinal study of one of these two cases, where a subsequent timepoint was analyzed, suggested disease stabilization on the primary stroke side and an elevated contralateral stroke risk, which was confirmed by patient outcome data. This indicates that post-stroke follow-up at regular intervals might be warranted for secondary stroke prevention. The findings of this study suggest that WSR-based metrics could be predictive of future stroke risk after an initial stroke in pediatric MMD patients. In addition, better predictions may be possible by performing patient-specific hemodynamic analysis at multiple timepoints during patient follow-up to monitor changes in the WSR-based metrics.

12.
Biol Open ; 11(9)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35451474

RESUMO

Hepatoblastoma (HB) is the most common pediatric primary liver malignancy, and survival for high-risk disease approaches 50%. Mouse models of HB fail to recapitulate hallmarks of high-risk disease. The aim of this work was to generate murine models that show high-risk features including multifocal tumors, vascular invasion, metastasis, and circulating tumor cells (CTCs). HepT1 cells were injected into the livers or tail veins of mice, and tumor growth was monitored with magnetic resonance and bioluminescent imaging. Blood was analyzed with fluorescence-activated cell sorting to identify CTCs. Intra- and extra-hepatic tumor samples were harvested for immunohistochemistry and RNA and DNA sequencing. Cell lines were grown from tumor samples and profiled with RNA sequencing. With intrahepatic injection of HepT1 cells, 100% of animals grew liver tumors and showed vascular invasion, metastasis, and CTCs. Mutation profiling revealed genetic alterations in seven cancer-related genes, while transcriptomic analyses showed changes in gene expression with cells that invade vessels. Tail vein injection of HepT1 cells resulted in multifocal, metastatic disease. These unique models will facilitate further meaningful studies of high-risk HB. This article has an associated First Person interview with the first author of the paper.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos
13.
PLoS One ; 16(2): e0247404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33635890

RESUMO

Child physical abuse is a leading cause of traumatic injury and death in children. In 2017, child abuse was responsible for 1688 fatalities in the United States, of 3.5 million children referred to Child Protection Services and 674,000 substantiated victims. While large referral hospitals maintain teams trained in Child Abuse Pediatrics, smaller community hospitals often do not have such dedicated resources to evaluate patients for potential abuse. Moreover, identification of abuse has a low margin of error, as false positive identifications lead to unwarranted separations, while false negatives allow dangerous situations to continue. This context makes the consistent detection of and response to abuse difficult, particularly given subtle signs in young, non-verbal patients. Here, we describe the development of artificial intelligence algorithms that use unstructured free-text in the electronic medical record-including notes from physicians, nurses, and social workers-to identify children who are suspected victims of physical abuse. Importantly, only the notes from time of first encounter (e.g.: birth, routine visit, sickness) to the last record before child protection team involvement were used. This allowed us to develop an algorithm using only information available prior to referral to the specialized child protection team. The study was performed in a multi-center referral pediatric hospital on patients screened for abuse within five different locations between 2015 and 2019. Of 1123 patients, 867 records were available after data cleaning and processing, and 55% were abuse-positive as determined by a multi-disciplinary team of clinical professionals. These electronic medical records were encoded with three natural language processing (NLP) algorithms-Bag of Words (BOW), Word Embeddings (WE), and Rules-Based (RB)-and used to train multiple neural network architectures. The BOW and WE encodings utilize the full free-text, while RB selects crucial phrases as identified by physicians. The best architecture was selected by average classification accuracy for the best performing model from each train-test split of a cross-validation experiment. Natural language processing coupled with neural networks detected cases of likely child abuse using only information available to clinicians prior to child protection team referral with average accuracy of 0.90±0.02 and average area under the receiver operator characteristic curve (ROC-AUC) 0.93±0.02 for the best performing Bag of Words models. The best performing rules-based models achieved average accuracy of 0.77±0.04 and average ROC-AUC 0.81±0.05, while a Word Embeddings strategy was severely limited by lack of representative embeddings. Importantly, the best performing model had a false positive rate of 8%, as compared to rates of 20% or higher in previously reported studies. This artificial intelligence approach can help screen patients for whom an abuse concern exists and streamline the identification of patients who may benefit from referral to a child protection team. Furthermore, this approach could be applied to develop computer-aided-diagnosis platforms for the challenging and often intractable problem of reliably identifying pediatric patients suffering from physical abuse.


Assuntos
Maus-Tratos Infantis/estatística & dados numéricos , Diagnóstico por Computador/métodos , Algoritmos , Criança , Aprendizado Profundo , Registros Eletrônicos de Saúde , Hospitais Comunitários , Humanos , Processamento de Linguagem Natural , Encaminhamento e Consulta , Estudos Retrospectivos , Estados Unidos/epidemiologia
14.
Contrast Media Mol Imaging ; 2021: 6641384, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220380

RESUMO

Objective: Tumor-associated macrophages (TAMs) within the tumor immune microenvironment (TiME) of solid tumors play an important role in treatment resistance and disease recurrence. The purpose of this study was to investigate if nanoradiomics (radiomic analysis of nanoparticle contrast-enhanced images) can differentiate tumors based on TAM burden. Materials and Methods: In vivo studies were performed in transgenic mouse models of neuroblastoma with low (N = 11) and high (N = 10) tumor-associated macrophage (TAM) burden. Animals underwent delayed nanoparticle contrast-enhanced CT (n-CECT) imaging at 4 days after intravenous administration of liposomal-iodine agent (1.1 g/kg). CT imaging-derived conventional tumor metrics (tumor volume and CT attenuation) were computed for segmented tumor CT datasets. Nanoradiomic analysis was performed using a PyRadiomics workflow implemented in the quantitative image feature pipeline (QIFP) server containing 900 radiomic features (RFs). RF selection was performed under supervised machine learning using a nonparametric neighborhood component method. A 5-fold validation was performed using a set of linear and nonlinear classifiers for group separation. Statistical analysis was performed using the Kruskal-Wallis test. Results: N-CECT imaging demonstrated heterogeneous patterns of signal enhancement in low and high TAM tumors. CT imaging-derived conventional tumor metrics showed no significant differences (p > 0.05) in tumor volume between low and high TAM tumors. Tumor CT attenuation was not significantly different (p > 0.05) between low and high TAM tumors. Machine learning-augmented nanoradiomic analysis revealed two RFs that differentiated (p < 0.002) low TAM and high TAM tumors. The RFs were used to build a linear classifier that demonstrated very high accuracy and further confirmed by 5-fold cross-validation. Conclusions: Imaging-derived conventional tumor metrics were unable to differentiate tumors with varying TAM burden; however, nanoradiomic analysis revealed texture differences and enabled differentiation of low and high TAM tumors.


Assuntos
Meios de Contraste/farmacologia , Nanopartículas/química , Neuroblastoma/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Animais , Meios de Contraste/química , Humanos , Radioisótopos do Iodo/química , Radioisótopos do Iodo/farmacologia , Aprendizado de Máquina , Camundongos , Camundongos Transgênicos , Neuroblastoma/patologia , Radiometria , Carga Tumoral/efeitos da radiação , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos da radiação , Macrófagos Associados a Tumor
15.
Biomech Model Mechanobiol ; 20(6): 2071-2084, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34283347

RESUMO

Moyamoya disease (MMD) is characterized by narrowing of the distal internal carotid artery and the circle of Willis (CoW) and leads to recurring ischemic and hemorrhagic stroke. A retrospective review of data from 50 pediatric MMD patients revealed that among the 24 who had a unilateral stroke and were surgically treated, 11 (45.8%) had a subsequent, contralateral stroke. There is no reliable way to predict these events. After a pilot study in Acta-/- mice that have features of MMD, we hypothesized that local hemodynamics are predictive of contralateral strokes and sought to develop a patient-specific analysis framework to noninvasively assess this stroke risk. A pediatric MMD patient with an occlusion in the right middle cerebral artery and a right-sided stroke, who was surgically treated and then had a contralateral stroke, was selected for analysis. By using an unsteady Navier-Stokes solver within an isogeometric analysis framework, blood flow was simulated in the CoW model reconstructed from the patient's postoperative imaging data, and the results were compared with those from an age- and sex-matched control subject. A wall shear rate (WSR) > 60,000 s-1 (about 12 × higher than the coagulation threshold of 5000 s-1 and 9 × higher than control) was measured in the terminal left supraclinoid artery; its location coincided with that of the subsequent postsurgical left-sided stroke. A parametric study of disease progression revealed a strong correlation between the degree of vascular morphology altered by MMD and local hemodynamic environment. The results suggest that an occlusion in the CoW could lead to excessive contralateral WSRs, resulting in thromboembolic ischemic events, and that WSR could be a predictor of future stroke.


Assuntos
Transtornos Cerebrovasculares/diagnóstico por imagem , Transtornos Cerebrovasculares/fisiopatologia , Simulação por Computador , Imageamento Tridimensional , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Angiografia , Animais , Transtornos Cerebrovasculares/patologia , Criança , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos Knockout , Doença de Moyamoya/patologia , Doença de Moyamoya/fisiopatologia , Projetos Piloto , Fluxo Sanguíneo Regional , Fatores de Risco , Acidente Vascular Cerebral/patologia
16.
Sci Rep ; 11(1): 2967, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536467

RESUMO

Hepatoblastoma (HB) is the most common pediatric liver malignancy. High-risk patients have poor survival, and current chemotherapies are associated with significant toxicities. Targeted therapies are needed to improve outcomes and patient quality of life. Most HB cases are TP53 wild-type; therefore, we hypothesized that targeting the p53 regulator Murine double minute 4 (MDM4) to reactivate p53 signaling may show efficacy. MDM4 expression was elevated in HB patient samples, and increased expression was strongly correlated with decreased expression of p53 target genes. Treatment with NSC207895 (XI-006), which inhibits MDM4 expression, or ATSP-7041, a stapled peptide dual inhibitor of MDM2 and MDM4, showed significant cytotoxic and antiproliferative effects in HB cells. Similar phenotypes were seen with short hairpin RNA (shRNA)-mediated inhibition of MDM4. Both NSC207895 and ATSP-7041 caused significant upregulation of p53 targets in HB cells. Knocking-down TP53 with shRNA or overexpressing MDM4 led to resistance to NSC207895-mediated cytotoxicity, suggesting that this phenotype is dependent on the MDM4-p53 axis. MDM4 inhibition also showed efficacy in a murine model of HB with significantly decreased tumor weight and increased apoptosis observed in the treatment group. This study demonstrates that inhibition of MDM4 is efficacious in HB by upregulating p53 tumor suppressor signaling.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Hepatoblastoma/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Oxidiazóis/farmacologia , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Pré-Escolar , Estudos de Coortes , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Hepatoblastoma/genética , Hepatoblastoma/patologia , Humanos , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Oxidiazóis/uso terapêutico , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Sci Adv ; 6(28): eaba6156, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32832602

RESUMO

Immunotherapies, including cell-based therapies, targeting the tumor microenvironment (TME) result in variable and delayed responses. Thus, it has been difficult to gauge the efficacy of TME-directed therapies early after administration. We investigated a nano-radiomics approach (quantitative analysis of nanoparticle contrast-enhanced three-dimensional images) for detection of tumor response to cellular immunotherapy directed against myeloid-derived suppressor cells (MDSCs), a key component of TME. Animals bearing human MDSC-containing solid tumor xenografts received treatment with MDSC-targeting human natural killer (NK) cells and underwent nanoparticle contrast-enhanced computed tomography (CT) imaging. Whereas conventional CT-derived tumor metrics were unable to differentiate NK cell immunotherapy tumors from untreated tumors, nano-radiomics revealed texture-based features capable of differentiating treatment groups. Our study shows that TME-directed cellular immunotherapy causes subtle changes not effectively gauged by conventional imaging metrics but revealed by nano-radiomics. Our work provides a method for noninvasive assessment of TME-directed immunotherapy potentially applicable to numerous solid tumors.


Assuntos
Células Supressoras Mieloides , Neoplasias , Animais , Humanos , Imunoterapia/métodos , Células Matadoras Naturais , Células Supressoras Mieloides/patologia , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Neoplasias/terapia , Microambiente Tumoral/fisiologia
18.
Placenta ; 77: 1-7, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30827350

RESUMO

INTRODUCTION: Visualization of the retroplacental clear space (RPCS) may provide critical insight into the development of abnormally invasive placenta (AIP). In this pre-clinical study, we characterized the appearance of the RPCS on magnetic resonance imaging (MRI) during the second half of gestation using a liposomal gadolinium contrast agent (liposomal-Gd). MATERIALS AND METHODS: Studies were performed in fifteen pregnant C57BL/6 mice at 10, 12, 14, 16, and 18 days of gestation. MRI was performed on a 1T permanent magnet scanner. Pre-contrast and post-contrast images were acquired using T1-weighted gradient-recalled echo (T1w-GRE) and T2-weighted fast spin echo (T2w-FSE) sequences. Animals were euthanized after imaging and feto-placental units harvested for histological examination. Visualization of the RPCS was scored by a maternal-fetal radiologist and quantified by measuring the contrast-to-noise ratio (CNR) on T1w images. Feto-placental features were segmented for analysis of volumetric changes during gestation. RESULTS: Contrast-enhanced T1w images enabled the visualization of structural changes in placental development between days 10-18 of gestation. Although the placental margin on the fetal side was clearly visible at all time points, the RPCS was partially visible at day 10 of gestation, and clearly visible by day 12. Hematoxylin and eosin (H&E) staining of the placental tissue corroborated MRI findings of structural and morphological changes in the placenta. CONCLUSIONS: Contrast-enhanced MR imaging using liposomal-Gd enabled adequate visualization of the retroplacental clear space starting at day 12 of gestation. The agent also enabled characterization of placental structure and morphological changes through gestation.


Assuntos
Imageamento por Ressonância Magnética/métodos , Placenta/diagnóstico por imagem , Animais , Meios de Contraste , Feminino , Gadolínio , Idade Gestacional , Lipossomos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Placenta/anatomia & histologia , Placentação , Gravidez
19.
Sci Rep ; 8(1): 14455, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30262808

RESUMO

Fluorescence imaging in the second near-infrared window (NIR-II) holds promise for real-time deep tissue imaging. In this work, we investigated the NIR-II fluorescence properties of a liposomal formulation of indocyanine green (ICG), a FDA-approved dye that was recently shown to exhibit NIR-II fluorescence. Fluorescence spectra of liposomal-ICG were collected in phosphate-buffered saline (PBS) and plasma. Imaging studies in an Intralipid® phantom were performed to determine penetration depth. In vivo imaging studies were performed to test real-time visualization of vascular structures in the hind limb and intracranial regions. Free ICG, NIR-I imaging, and cross-sectional imaging modalities (MRI and CT) were used as comparators. Fluorescence spectra demonstrated the strong NIR-II fluorescence of liposomal-ICG, similar to free ICG in plasma. In vitro studies demonstrated superior performance of liposomal-ICG over free ICG for NIR-II imaging of deep (≥4 mm) vascular mimicking structures. In vivo, NIR-II fluorescence imaging using liposomal-ICG resulted in significantly (p < 0.05) higher contrast-to-noise ratio compared to free ICG for extended periods of time, allowing visualization of hind limb and intracranial vasculature for up to 4 hours post-injection. In vivo comparisons demonstrated higher vessel conspicuity with liposomal-ICG-enhanced NIR-II imaging compared to NIR-I imaging.


Assuntos
Angiografia/métodos , Membro Posterior , Verde de Indocianina , Nanopartículas/química , Imagem Óptica/métodos , Crânio , Animais , Feminino , Membro Posterior/irrigação sanguínea , Membro Posterior/diagnóstico por imagem , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Lipossomos , Camundongos , Camundongos Nus , Imagens de Fantasmas , Crânio/irrigação sanguínea , Crânio/diagnóstico por imagem
20.
Sci Rep ; 8(1): 3733, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487319

RESUMO

Inflammation drives the degradation of atherosclerotic plaque, yet there are no non-invasive techniques available for imaging overall inflammation in atherosclerotic plaques, especially in the coronary arteries. To address this, we have developed a clinically relevant system to image overall inflammatory cell burden in plaque. Here, we describe a targeted contrast agent (THI0567-targeted liposomal-Gd) that is suitable for magnetic resonance (MR) imaging and binds with high affinity and selectivity to the integrin α4ß1(very late antigen-4, VLA-4), a key integrin involved in recruiting inflammatory cells to atherosclerotic plaques. This liposomal contrast agent has a high T1 relaxivity (~2 × 105 mM-1s-1 on a particle basis) resulting in the ability to image liposomes at a clinically relevant MR field strength. We were able to visualize atherosclerotic plaques in various regions of the aorta in atherosclerosis-prone ApoE-/- mice on a 1 Tesla small animal MRI scanner. These enhanced signals corresponded to the accumulation of monocyte/macrophages in the subendothelial layer of atherosclerotic plaques in vivo, whereas non-targeted liposomal nanoparticles did not demonstrate comparable signal enhancement. An inflammatory cell-targeted method that has the specificity and sensitivity to measure the inflammatory burden of a plaque could be used to noninvasively identify patients at risk of an acute ischemic event.


Assuntos
Integrina alfa4beta1/química , Integrina alfa4beta1/metabolismo , Imageamento por Ressonância Magnética , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/metabolismo , Animais , Modelos Animais de Doenças , Integrina alfa4beta1/antagonistas & inibidores , Ligantes , Lipossomos , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Knockout , Modelos Moleculares , Conformação Molecular , Placa Aterosclerótica/patologia , Ligação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa