RESUMO
The present study aimed to explore the usefulness of beagle dogs in combination with physiologically based pharmacokinetic (PBPK) modeling in the evaluation of drug exposure after oral administration to pediatric populations at an early stage of pharmaceutical product development. An exploratory, single-dose, crossover bioavailability study in six beagles was performed. A paracetamol suspension and an ibuprofen suspension were coadministered in the fasted-state conditions, under reference-meal fed-state conditions, and under infant-formula fed-state conditions. PBPK models developed with GastroPlus v9.7 were used to inform the extrapolation of beagle data to human infants and children. Beagle-based simulation outcomes were compared with published human-adult-based simulations. For paracetamol, fasted-state conditions and reference-meal fed-state conditions in beagles appeared to provide adequate information for the applied scaling approach. Fasted-state and/or reference-meal fed-state conditions in beagles appeared suitable to simulate the performance of ibuprofen suspension in pediatric populations. Contrary to human-adult-based translations, extrapolations based on beagle data collected under infant-formula fed-state conditions appeared less useful for informing simulations of plasma levels in pediatric populations. Beagle data collected under fasted and/or reference-meal fed-state conditions appeared to be useful in the investigation of pediatric product performance of the two investigated highly permeable and highly soluble drugs in the upper small intestine. The suitability of the beagle as a preclinical model to understand pediatric drug product performance under different dosing conditions deserves further evaluation with a broader spectrum of drugs and drug products and comparisons with pediatric in vivo data.
Assuntos
Acetaminofen , Ibuprofeno , Adulto , Lactente , Humanos , Animais , Cães , Criança , Ibuprofeno/farmacocinética , Administração Oral , Disponibilidade Biológica , Fórmulas Infantis , Suspensões , Modelos BiológicosRESUMO
Hot melt extrusion of amorphous systems has become a pivotal technology to cope with challenges of poorly water-soluble drugs. Previous research showed that small molecular additives with targeted molecular interactions enabled introduction of a polyelectrolyte matrix into hot melt extrusion that would otherwise not be possible to process due to the unfavorable properties upon heating of the pure polymer. Carboxymethyl cellulose sodium (NaCMC) with lysine or alternatively meglumine led to modified polymeric matrices that showed adequate processability by hot melt extrusion and yielded stable amorphous formulations. The investigated formulations, including fenofibrate as a model drug, were characterized by attenuated total reflectance Fourier transform infrared spectroscopy, differential scanning calorimetry, and viscosity measurements after aqueous dispersion. Further biopharmaceutical assessment started with biorelevant nonsink dissolution testing followed by a pharmacokinetic in vivo study in rats. The in vitro assessment showed superiority of the lysine-containing formulation in the extent of in vitro supersaturation and overall drug release. In accordance with this, the in vivo study also demonstrated increased exposure of the amorphous formulations and in particular for the system containing lysine. In summary, the combination of polyelectrolytes with interacting additives presents a promising opportunity for the formulation of poorly water-soluble drugs.
Assuntos
Preparações Farmacêuticas/química , Polieletrólitos/química , Animais , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Estabilidade de Medicamentos , Tecnologia de Extrusão por Fusão a Quente/métodos , Temperatura Alta , Masculino , Polímeros/química , Ratos , Ratos Sprague-Dawley , Solubilidade/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água/químicaRESUMO
To date, food-drug interactions in the pediatric population remain understudied. The current food effect studies are mostly performed in adults and do not mimic the real-life situation in the pediatric population. Since the potential benefits of food effect studies performed in pediatrics should be counterbalanced with the burden that these studies pose to the patients, alternative research strategies should be evaluated. The present study aimed to evaluate whether population pharmacokinetics (popPK) using data in beagle dogs and human adults could reliably assess food effects relevant for the pediatric population. PopPK was utilized to understand the performance of paracetamol under different dosing conditions (when the participants were fasted, with a reference meal, and with infant formula) in human adults (n = 8) and beagle dogs (n = 6) by constructing models to derive the pharmacokinetic parameters and to evaluate the food effects in both species. A two-compartment model with a single input function for the absorption phase best described the profiles of paracetamol in the beagle dogs. In the human adults, a one-compartment model with a dual input function for the absorption phase best described the data. The simulated profiles for the different dosing conditions demonstrated that both the human adults' and beagle dogs' simulations were able to acceptably describe the plasma concentration-time profiles of paracetamol observed in a representative pediatric population, which opens up perspectives on pediatric-relevant food effect predictions. However, the obtained results should be carefully interpreted, since an accurate validation of these findings was not possible due to the scarcity of the literature on observed pediatric data.
RESUMO
The majority of drug candidates exhibit weakly basic characteristics with high lipophilicity. The risk of intraluminal compound precipitation has been studied in vivo and extensively in vitro using advanced dissolution transfer setups mimicking drug transfer from the stomach to the small intestine. The present investigation aims to evaluate the usefulness of the recently introduced Artificial Stomach-Duodenum in silico tool in the DDDPlusTM platform (ASD-D+) to simulate intraluminal drug behavior. The weakly basic drugs ketoconazole and dipyridamole were used as model drugs within the ASD-D+ model at two dose levels. The simulated amounts per volume were compared to intraluminal data collected from fasted healthy adults. Four different in silico transfer models running on a continuous or a stepwise mode were utilized for the simulations. Each transfer model exhibited different capabilities to simulate observed intraluminal drug presence. Three out of the four in silico models overestimated the total drug amount measured in vivo (dissolved and precipitated drug), while only two of the four models matched the intraluminal drug concentrations. The stepwise model enabled adequate simulations of both drug concentration and total drug amount. The present investigation highlighted the importance of simulating drug transfer appropriately within the applied methodology prior to estimating precipitation kinetics. As a future step, optimization of ASD-D+ model would enable evaluations of solid/semi-solid dosage form simulations. Lastly, prediction of drug precipitation kinetics following simulation of gastrointestinal transfer may provide mechanistic understanding of drug absorption and appropriate justification of drug-formulated parameters within physiologically based pharmacokinetic models.
Assuntos
Cetoconazol , Modelos Biológicos , Administração Oral , Adulto , Simulação por Computador , Dipiridamol/farmacocinética , Humanos , Absorção Intestinal/fisiologia , Intestino Delgado/metabolismo , Cetoconazol/farmacocinética , SolubilidadeRESUMO
OBJECTIVES: To summarise key contributions of the Pharmaceutical Education and Research with Regulatory Links (PEARRL) project (2016-2020) to the optimisation of existing and the development of new biopharmaceutics tools for evaluating the in vivo performance of oral drug products during the development of new drugs and at the regulatory level. KEY FINDINGS: Optimised biopharmaceutics tools: Based on new clinical data, the composition of biorelevant media for simulating the fed state conditions in the stomach was simplified. Strategies on how to incorporate biorelevant in vitro data of bio-enabling drug products into physiologically based pharmacokinetic (PBPK) modelling were proposed. Novel in vitro biopharmaceutics tools: Small-scale two-stage biphasic dissolution and dissolution-permeation setups were developed to facilitate understanding of the supersaturation effects and precipitation risks of orally administered drugs. A porcine fasted state simulated intestinal fluid was developed to improve predictions and interpretation of preclinical results using in vitro dissolution studies. Based on new clinical data, recommendations on the design of in vitro methodologies for evaluating the GI drug transfer process in the fed state were suggested. The optimized design of in vivo studies for investigating food effects: A food effect study protocol in the pig model was established which successfully predicted the food-dependent bioavailability of two model compounds. The effect of simulated infant fed state conditions in healthy adults on the oral absorption of model drugs was evaluated versus the fasted state and the fed state conditions, as defined by regulatory agencies for adults. Using PBPK modelling, the extrapolated fasted and infant fed conditions data appeared to be more useful to describe early drug exposure in infants, while extrapolation of data collected under fed state conditions, as defined by regulators for adults, failed to capture in vivo infant drug absorption. SUMMARY: Substantial progress has been made in developing an advanced suite of biopharmaceutics tools for streamlining drug formulation screening and supporting regulatory applications. These advances in biopharmaceutics were achieved through networking opportunities and research collaborations provided under the H2020 funded PEARRL project.
Assuntos
Desenvolvimento de Medicamentos , Interações Alimento-Droga/fisiologia , Farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Biofarmácia/métodos , Composição de Medicamentos/métodos , Desenvolvimento de Medicamentos/educação , Desenvolvimento de Medicamentos/métodos , Desenvolvimento de Medicamentos/tendências , Educação em Farmácia/tendências , Trato Gastrointestinal/fisiologia , Humanos , Colaboração Intersetorial , Modelos Biológicos , Pesquisa Farmacêutica/tendências , SuínosRESUMO
The importance of physiologically based pharmacokinetic (PBPK) model refinement with data acquired in adults using a pediatric formulation under age-relevant dosing conditions in order to extrapolate drug exposure to infants was recently demonstrated for paracetamol. In the present investigation, the aim was to evaluate the importance of similar PBPK model refinement for a low-solubility weak acid, ibuprofen, to simulate exposure across pediatric populations, i.e., infants, young children, and schoolchildren. After developing and evaluating adult disposition and oral absorption models for the aqueous suspension of ibuprofen, ibuprofen performance was extrapolated to pediatrics simulating exposure as a function of different prandial and dosing conditions: fasted conditions, reference-meal fed conditions (solid-liquid meal), and infant-formula fed conditions (homogeneous liquid). Successful predictions were achieved when employing the refined model for fasted state conditions or for fed state conditions relevant to specific age groups, i.e., infant formula for infants and reference meal for children. The present study suggested that ibuprofen performance was primarily guided by gastric emptying and showed sensitivity towards formulation characteristics and pH changes in the small intestine. Better understanding of luminal conditions in pediatrics and age-dependent ibuprofen post-absorptive processes could improve modeling confidence for ibuprofen, as well as other drugs with similar characteristics.
Assuntos
Anti-Inflamatórios não Esteroides/farmacocinética , Ibuprofeno/farmacocinética , Modelos Biológicos , Administração Intravenosa , Administração Oral , Adulto , Fatores Etários , Anti-Inflamatórios não Esteroides/administração & dosagem , Disponibilidade Biológica , Criança , Pré-Escolar , Simulação por Computador , Conjuntos de Dados como Assunto , Relação Dose-Resposta a Droga , Jejum/fisiologia , Feminino , Esvaziamento Gástrico/fisiologia , Humanos , Ibuprofeno/administração & dosagem , Lactente , Absorção Intestinal/fisiologia , Masculino , Período Pós-Prandial/fisiologia , Solubilidade , SuspensõesRESUMO
Extending licensed drug use to the pediatric population has become an essential part of the drug development process. Nonetheless, ethical concerns limit clinical testing in pediatric populations and data collected from oral bioavailability and food effect studies in adults are often extrapolated to the target pediatric (sub)populations. However, based on published information, food effects on drug absorption in infants may not be adequately evaluated by data collected in adults. In the present study, a physiologically based pharmacokinetic (PBPK) approach for modeling paracetamol suspension data collected in adults was proposed with the ultimate aim to investigate whether extrapolation to infants is substantially affected by the dosing conditions applied to adults. The development of the PBPK model for adults was performed using GastroPlus™ V9.7, and after scaling to infants considering physiological, anatomical, and drug clearance changes, extrapolation of the different dosing conditions was performed by applying dosing conditions dependent on changes on the paracetamol gastric emptying process. Successful simulations of previously observed plasma concentration levels in infants were achieved when extrapolating from fasted and infant formula-fed conditions data. Data collected following the reference meal appeared less useful for simulating paracetamol suspension performance in infants. The proposed methodology deserves further evaluation using high-quality clinical data both in adults and in infants.
Assuntos
Acetaminofen/farmacocinética , Absorção Gastrointestinal/fisiologia , Modelos Biológicos , Acetaminofen/administração & dosagem , Administração Intravenosa , Administração Oral , Adolescente , Adulto , Fatores Etários , Disponibilidade Biológica , Biofarmácia/métodos , Tamanho Corporal/fisiologia , Criança , Pré-Escolar , Simulação por Computador , Conjuntos de Dados como Assunto , Relação Dose-Resposta a Droga , Interações Alimento-Droga , Humanos , Lactente , Taxa de Depuração Metabólica/fisiologia , SuspensõesRESUMO
OBJECTIVES: In this review, the current biopharmaceutical approaches for evaluation of oral formulation performance in paediatrics are discussed. KEY FINDINGS: The paediatric gastrointestinal (GI) tract undergoes numerous morphological and physiological changes throughout its development and growth. Some physiological parameters are yet to be investigated, limiting the use of the existing in vitro biopharmaceutical tools to predict the in vivo performance of paediatric formulations. Meals and frequencies of their administration evolve during childhood and affect oral drug absorption. Furthermore, the establishment of a paediatric Biopharmaceutics Classification System (pBCS), based on the adult Biopharmaceutics Classification System (BCS), requires criteria adjustments. The usefulness of computational simulation and modeling for extrapolation of adult data to paediatrics has been confirmed as a tool for predicting drug formulation performance. Despite the great number of successful physiologically based pharmacokinetic models to simulate drug disposition, the simulation of drug absorption from the GI tract is a complicating issue in paediatric populations. SUMMARY: The biopharmaceutics tools for investigation of oral drug absorption in paediatrics need further development, refinement and validation. A combination of in vitro and in silico methods could compensate for the uncertainties accompanying each method on its own.
Assuntos
Trato Gastrointestinal/metabolismo , Absorção Intestinal , Modelos Biológicos , Administração Oral , Animais , Química Farmacêutica/métodos , Criança , Simulação por Computador , Humanos , Pediatria , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismoRESUMO
In the present investigation, it was explored whether food effect on drug absorption in adults is similar with the food effect after administration of an infant meal with the drug product to adults. After confirming lack of pharmaceutical and pharmacokinetic interaction, a paracetamol suspension and an ibuprofen suspension were co-administered to eight healthy adults on a crossover basis in three different occasions, i.e. in the fasted state (as defined by regulatory agencies, fasted conditions), in the fed state (as defined by regulatory agencies, fed conditions) and under conditions simulating the fed state in infants (infant fed conditions). Unlike under fed conditions, under infant fed conditions early exposure was significantly lower than under fasted conditions for both paracetamol and ibuprofen. Also, for ibuprofen, Cmax values under infant fed conditions were significantly higher than under fed conditions. These data suggest that, even for drugs with non-problematic absorption administered in simple dosage forms, food effects in infants may not be adequately evaluated if the protocol suggested by regulatory agencies is applied. The usefulness of the methodology employed in the present investigation for simulating the fed state in infants deserves further evaluation. Until then, food effects in infants should be considered cautiously or be evaluated in infants.
Assuntos
Acetaminofen/farmacocinética , Analgésicos não Narcóticos/farmacocinética , Interações Alimento-Droga , Ibuprofeno/farmacocinética , Fórmulas Infantis , Acetaminofen/sangue , Adulto , Analgésicos não Narcóticos/sangue , Esvaziamento Gástrico , Voluntários Saudáveis , Humanos , Ibuprofeno/sangue , Lactente , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
The simultaneous intake of food and drugs can have a strong impact on drug release, absorption, distribution, metabolism and/or elimination and consequently, on the efficacy and safety of pharmacotherapy. As such, food-drug interactions are one of the main challenges in oral drug administration. Whereas pharmacokinetic (PK) food-drug interactions can have a variety of causes, pharmacodynamic (PD) food-drug interactions occur due to specific pharmacological interactions between a drug and particular drinks or food. In recent years, extensive efforts were made to elucidate the mechanisms that drive pharmacokinetic food-drug interactions. Their occurrence depends mainly on the properties of the drug substance, the formulation and a multitude of physiological factors. Every intake of food or drink changes the physiological conditions in the human gastrointestinal tract. Therefore, a precise understanding of how different foods and drinks affect the processes of drug absorption, distribution, metabolism and/or elimination as well as formulation performance is important in order to be able to predict and avoid such interactions. Furthermore, it must be considered that beverages such as milk, grapefruit juice and alcohol can also lead to specific food-drug interactions. In this regard, the growing use of food supplements and functional food requires urgent attention in oral pharmacotherapy. Recently, a new consortium in Understanding Gastrointestinal Absorption-related Processes (UNGAP) was established through COST, a funding organisation of the European Union supporting translational research across Europe. In this review of the UNGAP Working group "Food-Drug Interface", the different mechanisms that can lead to pharmacokinetic food-drug interactions are discussed and summarised from different expert perspectives.