Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Oncol Pharm Pract ; 26(8): 1894-1902, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32054415

RESUMO

BACKGROUND: Postoperative administration of parenteral nutrition has become routine management in patients with gastrointestinal cancer. Providing patient the complete parenteral nutrition containing not only the macronutrients and electrolytes but also adequate doses of vitamins is a significant issue of nutritional therapy. The aim of the study was to develop parenteral nutrition containing a high dose of vitamin C (500 mg) and evaluate their stability. METHODS: Five compositions of parenteral nutrition were developed and stored for seven days in three different conditions. Physical stability studies including visual examination and determination of pH, size of lipid droplets (using dynamic laser scattering method), and zeta potential (using laser Doppler electrophoresis method) were performed for all studied parenteral nutrition with and without vitamin C immediately after preparation and after storage. The content of vitamin C was determined using high-performance liquid chromatography (HPLC) method. RESULTS: The addition of vitamin C to parenteral nutrition did not affect its physical stability. Degradation of vitamin C in parenteral nutrition occurred according to first-order kinetics reaction. The content of vitamin C remained above 90% of zero-time content within the first 24 h for each studied parenteral nutrition compositions stored at 4°C and 25°C with light protection. CONCLUSIONS: Vitamin C added to parenteral nutrition was unstable regardless of the storage conditions nor parenteral nutrition compositions. However, for the first 24 h, the content of vitamin C remained in the pharmacopoeial limit. Therefore, supplementation of parenteral nutrition admixtures with vitamin C in the dose of 500 mg is possible in the condition of administration to the patients within the first 24 h.


Assuntos
Ácido Ascórbico/análise , Nutrição Parenteral , Vitaminas/análise , Estabilidade de Medicamentos , Humanos
2.
J Oncol Pharm Pract ; 25(6): 1434-1438, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30940049

RESUMO

OBJECTIVE: The aim of the study was to determine the stability of two non-commercially produced solutions: 1.68% sodium bicarbonate in 5% glucose (BIC solution) and 1.6% calcium chloride in 0.9% sodium chloride (CAL solution), which can be used to treat tumor lysis syndrome. One of the ways to treat the tumor lysis syndrome is to irrigate patients, alkalinize the urine through the supply of BIC solution or continuous hemodialysis with regional citrate anticoagulation, using a CAL solution. METHOD: The study took place in two independent hospital pharmacies. Fifty samples of each solution were prepared under aseptic conditions, then the concentration of sodium and calcium ions was determined and microbiological purity tests were carried out. The tests were performed on the day of sample preparation and after seven days of storage at 4 ± 1℃. RESULTS: The obtained results showed that applied preparation method was precise and accuracy. The average concentration of sodium ions in BIC solutions ranged from 187.7 to 185.26 mmol/L on 1st and 7th day, respectively. The average concentration of calcium ions in CAL solution ranged from 68.92 to 68.80 mmol/L on 1st and 7th day, respectively. None of the samples were microbiologically contaminated. CONCLUSION: Studied solutions for infusion were characterized by good chemical and microbiological stability when prepared in a clean room and stored at 4 ± 1℃.


Assuntos
Cloreto de Cálcio/química , Glucose/química , Bicarbonato de Sódio/química , Cloreto de Sódio/química , Composição de Medicamentos , Contaminação de Medicamentos , Estabilidade de Medicamentos , Humanos , Infusões Parenterais , Soluções Farmacêuticas , Soluções , Síndrome de Lise Tumoral/tratamento farmacológico
3.
Molecules ; 24(7)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934964

RESUMO

Patients referred to intensive care units (ICU) require special care due to their life-threatening condition, diseases and, frequently, malnutrition. Critically ill patients manifest a range of typical physiological changes caused by predominantly catabolic reactions in the body. It is necessary to provide the patients with proper nutrition, for example by administering total parenteral nutrition (TPN). The addition of linezolid to TPN mixtures for patients treated for linezolid-sensitive infections may reduce the extent of vascular access handling, resulting in a diminished risk of unwanted catheter-related infections. The compatibility and stability studies were conducted of linezolid in parenteral nutrition mixtures of basic, high- and low-electrolytic, high- and low-energetic and immunomodulatory composition. Mixtures containing linezolid were stored at 4⁻6 °C and 25 °C with light protection and at 25 °C without light protection for 168 h. In order to evaluate changes in the concentration of linezolid a previously validated reversed-phase HPLC method with UV detection was used. It was found that linezolid was stable at 4⁻6 °C in the whole course of the study whereas at 25 °C it proved stable over a period of 24 h required for administration of parenteral nutrition mixtures. The TPN mixtures demonstrated compatibility with linezolid and suitable stability, which were not affected by time or storage conditions.


Assuntos
Antibacterianos/química , Fenômenos Químicos , Linezolida/química , Nutrição Parenteral , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Hidrólise , Estrutura Molecular , Nutrição Parenteral/métodos , Nutrição Parenteral Total , Reprodutibilidade dos Testes
4.
Medicina (Kaunas) ; 55(12)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810303

RESUMO

The group of patients most frequently in need of nutritional support are intensive care patients. This year (i.e., 2019), new European Society for Clinical Nutrition and Metabolism (ESPEN) guidelines of clinical nutrition in intensive care were published, updating and gathering current knowledge on the subject of this group of patients. Planning the right nutritional intervention is often a challenging task involving the necessity of the choice of the enteral nutrition (EN) or parenteral nutrition (PN) route of administration, time of initiation, energy demand, amino acid content and demand as well as the use of immunomodulatory nutrition. The aim of this study was to specify and discuss the basic aspects of the clinical nutrition of critically ill patients recommended by ESPEN guidelines. Clinical nutrition in intensive care seems to be the best-studied type of nutritional intervention. However, meta-analyses and clinical studies comparing EN and PN and their impact on the prognosis of the intensive care patients showed ambiguous results. The nutritional interventions, starting with EN, should be initiated within 24-48 h whereas PN, if recommended, should be implemented within 3-7 days. The recommended method of calculation of the energy demand is indirect calorimetry, however, there are also validated equations used worldwide in everyday practice. The recommended protein intake in this group of patients and the results of insufficient or too high supply was addressed. In light of the concept of immunomodulatory nutrition, the use of appropriate amino acid solutions and lipid emulsion that can bring a positive effect on the modulation of the immune response was discussed.


Assuntos
Calorimetria Indireta/normas , Cuidados Críticos/normas , Estado Terminal/terapia , Nutrição Enteral/normas , Nutrição Parenteral/normas , Proteínas Alimentares/análise , Europa (Continente) , Humanos , Unidades de Terapia Intensiva , Guias de Prática Clínica como Assunto , Sociedades Médicas
5.
Cancers (Basel) ; 16(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38927963

RESUMO

Cancer is a leading cause of death worldwide, and the effectiveness of treatment is consistently not at a satisfactory level. This review thoroughly examines the present knowledge and perspectives of honokiol (HON) in cancer therapeutics. The paper synthesizes critical insights into the molecular mechanisms underlying the observed anticancer effects, emphasizing both in vitro and in vivo studies. The effects of HON application, primarily in the common types of cancers, are presented. Because the therapeutic potential of HON may be limited by its physicochemical properties, appropriate delivery systems are sought to overcome this problem. This review discusses the effect of different nanotechnology-based delivery systems on the efficiency of HON. The data presented show that HON exhibits anticancer effects and can be successfully administered to the site of action. Honokiol exerts its anticancer activity through several mechanisms. Moreover, some authors used the combinations of classical anticancer drugs with HON. Such an approach is very interesting and worth further investigation. Understanding HON's multiple molecular mechanisms would provide valuable insights into how HON might be developed as an effective therapeutic. Therefore, further research is needed to explore its specific applications and optimize its efficacy in diverse cancer types.

6.
Clin Nutr ; 43(9): 1952-1971, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39032247

RESUMO

Parenteral nutrition (PN) is a life-saving procedure conducted to maintain a proper nutritional state in patients with severe intestinal failure who cannot be fed orally. A serious complication of PN therapy is liver failure, known as intestinal failure-associated liver disease (IFALD). The pathogenesis of IFALD is multifactorial and includes inhibition of the farnesoid X receptor (FXR) by PN components, bacteria translocation from impaired intestines, and intravenous line-associated bloodstream infection. Currently, the most frequently researched therapeutic option for IFALD is using lipid emulsions based on soy or fish oil and, therefore, free from phytosterols known as FXR antagonists. Nevertheless, the potential side effects of the lack of soybean oil delivery seem to outweigh the benefits, especially in the pediatric population. PN admixture provides all the necessary nutrients; however, it is deprived of exogenous natural bioactive compounds (NBCs) of plant origin, such as polyphenols, characterized by health-promoting properties. Among them, many substances have already been known to demonstrate the hepatoprotective effect in various liver diseases. Therefore, searching for new therapeutic options for IFALD among NBCs seems reasonable and potentially successful. This review summarizes the recent research on polyphenols and their use in treating various liver diseases, especially metabolic dysfunction-associated steatotic liver diseases (MASLD). Furthermore, based on scientific reports, we have described the molecular mechanism of action of selected NBCs that exert hepatoprotective properties. We also summarized the current knowledge on IFALD pathogenesis, described therapeutic options undergoing clinical trials, and presented the future perspective of the potential use of NBCs in PN therapy.

7.
Geroscience ; 46(3): 3085-3103, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38191834

RESUMO

Colitis, a subtype of inflammatory bowel disease (IBD), is a multifactorial disorder characterized by chronic inflammation of the colon. Among various experimental models used in the study of IBD, the chemical colitogenic dextran sulfate sodium (DSS) is most commonly employed to induce colitis in vivo. In the search for new therapeutic strategies, Fisetin, a flavonoid found in many fruits and vegetables, has recently garnered attention for its senolytic properties. Female mice were administered 2.5% DSS in sterile drinking water and were subsequently treated with Fisetin or vehicle by oral gavage. DSS significantly upregulated beta-galactosidase activity in colonic proteins, while Fisetin remarkably inhibited its activity to baseline levels. Particularly, qPCR revealed that the senescence and inflammation markers Vimentin and Ptgs2 were elevated by DSS exposure with Fisetin treatment inhibiting the expression of p53, Bcl2, Cxcl1, and Mcp1, indicating that the treatment reduced senescent cell burden in the DSS targeted intestine. Alongside, senescence and inflammation associated miRNAs miR-149-5p, miR-96-5p, miR-34a-5p, and miR-30e-5p were significantly inhibited by DSS exposure and restored by Fisetin treatment, revealing novel targets for the treatment of IBDs. Metagenomics was implemented to assess impacts on the microbiota, with DSS increasing the prevalence of bacteria in the phyla Bacteroidetes. Meanwhile, Fisetin restored gut health through increased abundance of Akkermansia muciniphila, which is negatively correlated with senescence and inflammation. Our study suggests that Fisetin mitigates DSS-induced colitis by targeting senescence and inflammation and restoring beneficial bacteria in the gut indicating its potential as a therapeutic intervention for IBDs.


Assuntos
Colite , Flavonóis , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , MicroRNAs , Feminino , Animais , Camundongos , Modelos Animais de Doenças , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação , Doenças Inflamatórias Intestinais/microbiologia , Biomarcadores
8.
Eur J Pharm Biopharm ; 191: 36-56, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37586663

RESUMO

Nanoemulsions have gained increasing attention in recent years as a drug delivery system due to their ability to improve the solubility and bioavailability of poorly water-soluble drugs. This systematic review aimed to collect and critically analyze recent novelties in developing, designing, and optimizing intravenous nanoemulsions appearing in articles published between 2017 and 2022. The applied methodology involved searching two electronic databases PubMed and Scopus, using the keyword "nanoemulsion" in combination with "intravenous" or "parenteral". The resulting original articles were classified by the method of preparation into different categories. An overview of the current methods used for the preparation of such formulations, including high- and low-energy emulsification, was provided. The advantages and disadvantages of these methods were discussed, as well as their potential impact on the properties of the developed intravenous nanoemulsions. The problem of inconsistency in intravenous nanoemulsion terminology may lead to misunderstandings and misinterpretations of their properties and applications was also undertaken. Finally, the regulatory aspects of intravenous nanoemulsions, the state of the art in the field of intravenous emulsifiers, and the future perspectives were presented.

9.
J Pharm Sci ; 112(10): 2597-2603, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37595749

RESUMO

PURPOSE: Aminoglycosides (AMGs) are broad-spectrum bactericidal antibiotics that can resolve bacterial infections co-existing with COVID-19 or exploit their potential antiviral activities. Patients presenting the most severe forms of COVID-19 due to escalating catabolism and significant lean body mass loss often require the concomitant administration of parenteral nutrition (PN) and antibiotics. The Y-site administration is one of the approaches allowing the co-administration of two intravenous medications in patients with limited vascular access. Our study aimed to investigate the compatibility of AMGs and selected commercial PN admixtures enriched in omega-3 fatty acids. METHODS: Gentamycin (GM), amikacin (AM), and tobramycin (TM) solutions for infusion were combined with Nutriflex Omega Special (NOS) and Smofkabiven (SFK). Three different volume ratios were investigated: 1:2, 1:1, and 2:1, simulating Y-site administration. Samples underwent visual examination and determination of the lipid emulsion particle size, zeta potential, and pH immediately after preparation and after four hours of storage at room temperature (22 ± 2 °C) with sunlight exposure. RESULTS: GM and AM combined with NOS in all studied ratios met the set-up acceptance criteria. The addition of TM to NOS in a 2:1 volume ratio and all tested AMGs to SFK in all studied combinations significantly influenced the stability of the oil-water system leading to the appearance of globules larger than 5 µm exceeding the pharmacopeial limit of 0.05% immediately after preparation or after four hours of storage. CONCLUSION: In conclusion, our study showed that NOS was less prone to destabilization of oil-in-water systems by AMGs than SFK. In justified clinical cases, due to the lack of appearance of precipitate or enlarged lipid droplets, the combined administration of GM and AM with the NOS could be considered, provided tested volume ratios of the drug and MCB in the infusion line are maintained. However, it should be noted that such an infusion may be associated with the risk of changes in the pharmacokinetics of the drug.


Assuntos
Aminoglicosídeos , COVID-19 , Humanos , Antibacterianos/uso terapêutico , Gentamicinas , Tobramicina , Nutrição Parenteral , Água
10.
Pharmaceutics ; 15(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36839769

RESUMO

BACKGROUND: Glioblastoma (GBM) is an extremely invasive and heterogenous malignant brain tumor. Despite advances in current anticancer therapy, treatment options for glioblastoma remain limited, and tumor recurrence is inevitable. Therefore, alternative therapies or new active compounds that can be used as adjuvant therapy are needed. This study aimed to develop, optimize, and characterize honokiol-loaded nanoemulsions intended for intravenous administration in glioblastoma therapy. METHODS: Honokiol-loaded nanoemulsion was developed by incorporating honokiol into Lipofundin MCT/LCT 20% using a horizontal shaker. The Box-Behnken design, coupled with response surface methodology, was used to optimize the incorporation process. The effect of the developed formulation on glioblastoma cell viability was determined using the MTT test. Long-term and short-term stress tests were performed to evaluate the effect of honokiol on the stability of the oil-in-water system and the effect of different stress factors on the stability of honokiol, respectively. Its physicochemical properties, such as MDD, PDI, ZP, OSM, pH, and loading efficiency (LE%), were determined. RESULTS: The optimized honokiol-loaded nanoemulsion was characterized by an MDD of 201.4 (0.7) nm with a PDI of 0.07 (0.02) and a ZP of -28.5 (0.9) mV. The LE% of honokiol was above 95%, and pH and OSM were sufficient for intravenous administration. The developed formulation was characterized by good stability and a satisfactory toxicity effect of the glioblastoma cell lines. CONCLUSIONS: The honokiol-loaded nanoemulsion is a promising pharmaceutical formulation for further development in the adjuvant therapy of glioblastoma.

11.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37765070

RESUMO

Intestinal failure-associated liver disease (IFALD) is a severe liver injury occurring due to factors related to intestinal failure and parenteral nutrition administration. Different approaches are studied to reduce the risk or ameliorate the course of IFALD, including providing omega-3 fatty acids instead of soybean oil-based lipid emulsion or administering active compounds that exert a hepatoprotective effect. This study aimed to develop, optimize, and characterize magnolol-loaded intravenous lipid emulsion for parenteral nutrition. The preformulation studies allowed for chosen oils mixture of the highest capacity of magnolol solubilization. Then, magnolol-loaded SMOFlipid was developed using the passive incorporation method. The Box-Behnken design and response surface methodology were used to optimize the entrapment efficiency. The optimal formulation was subjected to short-term stress tests, and its effect on normal human liver cells and erythrocytes was determined using the MTT and hemolysis tests, respectively. The optimized magnolol-loaded SMOFlipid was characterized by the mean droplet diameter of 327.6 ± 2.9 nm with a polydispersity index of 0.12 ± 0.02 and zeta potential of -32.8 ± 1.2 mV. The entrapment efficiency of magnolol was above 98%, and pH and osmolality were sufficient for intravenous administration. The magnolol-loaded SMOFlipid samples showed a significantly lower toxic effect than bare SMOFlipid in the same concentration on THLE-2 cells, and revealed an acceptable hemolytic effect of 8.3%. The developed formulation was characterized by satisfactory stability. The in vitro studies showed the reduced cytotoxic effect of MAG-SMOF applied in high concentrations compared to bare SMOFlipid and the non-hemolytic effect on human blood cells. The magnolol-loaded SMOFlipid is promising for further development of hepatoprotective lipid emulsion for parenteral nutrition.

12.
Pharmaceutics ; 15(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631318

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most frequently occurring primary malignant central nervous system tumor, with a poor prognosis and median survival below two years. Administration of a combination of non-steroidal anti-inflammatory drugs and natural compounds that exhibit a curative or prophylactic effect in cancer is a new approach to GBM treatment. This study aimed to investigate the synergistic antitumor activity of etoricoxib (ETO) and cannabidiol (CBD) in a GBM cell line model, and to develop poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) for these two substances. METHODS: The activity of ETO+CBD was determined using the MTT test, cell-cycle distribution assay, and apoptosis analysis using two GBM cell lines, namely, T98G and U-138 MG. The PLGA-based NPs were developed using the emulsification and solvent evaporation method. Their physicochemical properties, such as shape, size, entrapment efficiency (EE%), in vitro drug release, and quality attributes, were determined using scanning electron microscopy, diffraction light scattering, high-performance liquid chromatography, infrared spectroscopy, and differential scanning calorimetry. RESULTS: The combination of ETO and CBD reduced the viability of cells in a dose-dependent manner and induced apoptosis in both tested GBM cell lines. The developed method allowed for the preparation of ETO+CBD-NPs with a spherical shape, mean particle size (MPS) below 400 nm, zeta potential (ZP) values from -11 to -17.4 mV, polydispersity index (PDI) values in the range from 0.029 to 0.256, and sufficient EE% of both drugs (78.43% for CBD, 10.94% for ETO). CONCLUSIONS: The combination of ETO and CBD is a promising adjuvant therapeutic in the treatment of GBM, and the prepared ETO+CBD-NPs exhibit a high potential for further pharmaceutical formulation development.

13.
Eur J Med Chem ; 261: 115820, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37776575

RESUMO

Epigallocatechin gallate (EGCG) is a polyphenol present in green tea (Camellia sinensis), which has revealed anti-cancer effects toward a variety of cancer cells in vitro and protective potential against neurodegenerative diseases such as Alzheimer's and Parkinson's. Unfortunately, EGCG presents disappointing bioavailability after oral administration, primarily due to its chemical instability and poor absorption. Due to these limitations, EGCG is currently not used in medication, but only as a dietary supplement in the form of green tea extract. Therefore, it needs further modifications before being considered suitable for extensive medical applications. In this article, we review the scientific literature about EGCG derivatives focusing on their biological properties and potential medical applications. The most common chemical modifications of epigallocatechin gallate rely on introducing fatty acid chains or sugar molecules to its chemical structure to modify solubility. Another frequently employed procedure is based on blocking EGCG's hydroxyl groups with various substituents. Novel derivatives reveal interesting properties, of which, antioxidant, anti-inflammatory, antitumor and antimicrobial, are especially important. It is worth noting that the most promising EGCG derivatives present higher stability and activity than base EGCG.


Assuntos
Camellia sinensis , Catequina , Polifenóis/farmacologia , Catequina/farmacologia , Chá/química , Camellia sinensis/química , Antioxidantes/farmacologia
14.
Aging Cell ; 22(6): e13845, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37042069

RESUMO

Despite the growing interest by researchers into cellular senescence, a hallmark of cellular aging, its role in human skin remains equivocal. The skin is the largest and most accessible human organ, reacting to the external and internal environment. Hence, it is an organ of choice to investigate cellular senescence and to target root-cause aging processes using senolytic and senomorphic agents, including naturally occurring plant-based derivatives. This review presents different aspects of skin cellular senescence, from physiology to pathology and signaling pathways. Cellular senescence can have both beneficial and detrimental effects on the skin, indicating that both prosenescent and antisenescent therapies may be desirable, based on the context. Knowledge of molecular mechanisms involved in skin cellular senescence may provide meaningful insights for developing effective therapeutics for senescence-related skin disorders, such as wound healing and cosmetic skin aging changes.


Assuntos
Senescência Celular , Envelhecimento da Pele , Humanos , Senescência Celular/fisiologia , Transdução de Sinais
15.
Pharmaceutics ; 14(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36559064

RESUMO

Ketoprofen (KTF) is often used in hospital wards, especially in its intravenous form. According to the literature review, the compatibility of ketoprofen with parenteral nutrition (PN) admixtures has not yet been investigated. For this reason, we aimed to provide data contributing to physical compatibility to ensure the safe co-administration of these medications. In this study, we examined the compatibility of KTF with eight selected commercial PN admixtures intended for central (Lipoflex Special, Omegaflex Special, Kabiven, SmofKabiven) and peripheral (Lipoflex peri, Omegaflex peri, Kabiven Peripheral, Olimel Peri N4E) administration. The KTF solution for infusion was combined in three different volume ratios with studied PN admixtures reflecting the conditions in clinical practice. The evaluation of undesirable physical destabilization of oil-in-water system or precipitate formation involved the visual inspection and the determination of mean droplet diameter, zeta potential, pH, and turbidity changes. The results of compatibility of KTF with eight commercial PN admixtures showed that three of them: Kabiven, SmofKabiven, and Kabiven Peripheral, are incompatible with KTF and should not be concomitantly administered.

16.
Pharmaceutics ; 14(2)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35214103

RESUMO

Epilepsy is defined as a group of concerning problems related to the nervous system; its defining feature is a predisposition to epileptic seizures. The frequency of seizures in intensive care units (ICU) ranges from 3.3% to 34%, and ICU antiepileptic treatment is routine practice. The administration of drugs through the same infusion line is not recommended but is common clinical practice, especially in ICU. Incompatibilities between parenteral drugs and between drugs and parenteral nutrition admixtures (PNAs) are common medical errors and pose risks to patient safety. The co-administration of drugs must always be confirmed and clearly defined. The simultaneous infusion of sodium valproate (VPA, drug used to treat seizures and epilepsy) with parenteral PNAs has not yet been studied. During the experiment reported in this study, a visual control, pH, osmolality, zeta potential, particle size, polydispersity index, and turbidity were measured. The conducted research shows that the lipid emulsion composition has a significant influence on drug-PN (drug-parenteral nutrition) compatibility. The acceptance criteria were met only for PNs containing omega-3-acid-triglycerides (Omegaflex special and peri). The second fraction of particles above 1000 nm was observed for most of the tested PNAs (Lipoflex special, Lipoflex peri, Kabiven, SmofKabiven, Kabiven Peripheral, and Olimel Peri N4E), which disqualifies their simultaneous administration with VPA.

17.
Materials (Basel) ; 15(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35160897

RESUMO

Improvement of the bioavailability of poorly soluble medicinal substances is currently one of the major challenges for pharmaceutical industry. Enhancing the dissolution rate of those drugs using novel methods allows to increase their bioavailability. In recent years, silica-based mesoporous materials have been proposed as drug delivery systems that augment the dissolution rate. The aim of this study was to analyse the influence of phenylbutazone adsorption on SBA-15 on its dissolution rate. Moreover, we examined the cytotoxicity of the analyzed silica. The material was characterized by SEM, TEM, DSC, 1H-NMR, XRD, and FT-IR. The phenylbutazone did not adsorb on unmodified SBA-15, while the adsorption on APTES-modified SBA-15 resulted in 50.43 mg/g of loaded phenylbutazone. Phenylbutazone adsorbed on the APTES-modified SBA-15 was then released in the hydrochloric acidic medium (pH 1.2) and phosphate buffer (pH 7.4) and compared to the dissolution rate of the crystalline phenylbutazone. The release profiles of the amorphous form of adsorbed phenylbutazone are constant in different pH, while the dissolution rate of the crystalline phenylbutazone depends on the pH. The cytotoxicity assays were performed using the Caco-2 cell line. Our results indicate that the analyzed material ensured phenylbutazone adsorption in an amorphous state inside the mesopores and increased its dissolution rate in various pH levels. Furthermore, the cytotoxicity assay proved safety of studied material. Our study demonstrated that APTES-modified SBA-15 can serve as a non-toxic drug carrier that improves the bioavailability of phenylbutazone.

18.
Biomed Pharmacother ; 154: 113560, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36030583

RESUMO

Neoplastic diseases of the upper respiratory airways, as well as head and neck cancers, are a frequent cause of death and significantly affect the quality of life of both patients and survivors. As the frequency increases, new and improved treatment techniques are sought. Promising properties in this respect are expressed by a natural compound - curcumin. Along with its derivatives, it was found useful in the treatment of a series of cancers. Curcumin was found to be effective in clinical trials and in vitro, in vivo anticancer experiments. Nanoformulations (e.g., poly(lactide-co-glycolic acid)-based nanoparticles, nanoemulsions), and modifications of curcumin, as well as its combinations with other substances (e.g., catechins, cisplatin) or treatments (e.g., radiotherapy or local use in inhalation), were found to enhance the antitumor effect. This review aims to summarize the recent findings for the treatment of head and neck diseases, especially squamous cell carcinomas (HNSCCs), including drawing attention to the constant use of the misidentified Hep-2 cell line and proposing databases purposed at eliminating this problem. Moreover, this manuscript focuses on pointing out the molecular mechanisms of therapy that have been reached and emphasizing the shortcomings that still need to be addressed.


Assuntos
Antineoplásicos , Curcumina , Neoplasias de Cabeça e Pescoço , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Curcumina/farmacologia , Curcumina/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Qualidade de Vida
19.
Pharmaceutics ; 13(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34371709

RESUMO

The administration of three-in-one parenteral nutrition (PN) admixtures to pediatric patients requires special consideration, specifically concerning quality and physicochemical stability. The introduction of a new parenteral amino acid solution into the market prompted us to evaluate Aminoplasmal Paed-based PN admixtures' stability. The study aimed to determine the physicochemical parameters of the chosen variations of PN admixtures and search for a correlation between its composition and those parameters. One hundred and sixty-eight variations of PN admixtures intended for patients weighing from 10 to 25 kg and aged from 1 to 12 years and differing in the quantitative composition of electrolytes were selected for the study. The samples were prepared using each of the four intravenous lipid emulsions dedicated to pediatric patients: Intralipid 20%, Clinoleic 20%, Lipidem 20%, and Smoflipid 20%. The stability of the PN admixtures was assessed by visual inspection and determination of pH, osmolality, zeta potential, and hydrodynamic mean droplet diameter (MDD) immediately upon preparation and after seven days of storage at the temperature of 5 ± 1 °C with light protection. Pearson's correlation was used to quantify the relationships between selected ingredients of the PN admixtures and the physicochemical parameters. The PN admixtures were characterized by pH ranging from 5.91 to 7.04, osmolality ranging from 1238 to 1678 mOsm/kg, and zeta potential ranging from -41.3 to -2.16 mV. The changes in pH and osmolality after seven days of storage did not exceed 0.2 and 4.4%, respectively. The homogeneity of the PN admixtures was confirmed by determining the polydispersity index, which ranged from 0.06 to 0.2. The MDD of the studied formulas ranged from 235 to 395 nm and from 233 to 365 nm immediately upon preparation and after the storage period, respectively. Correlations between selected components of the PN admixtures and some physicochemical parameters were found. All Aminoplasmal Paed 10%-based PN admixtures were characterized by appropriate physicochemical quality to be administered via the central veins, both immediately upon preparation and after seven days of storage at the temperature of 5 ± 1 °C with light protection. The applied electrolyte concentrations ranges and types of lipid emulsions in the selected macronutrient quantitative compositions allowed the PN admixtures to remain stable for seven days within the specified limits.

20.
Nutrition ; 84: 111020, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33139150

RESUMO

OBJECTIVES: Supplementation of parenteral nutrition (PN) admixtures with other parenteral drugs may be desired especially in the case of polypharmacy and limited vascular access. Metronidazole (MTZ) is administered in surgical and critically ill patients often requiring concomitant nutritional therapy in the form of parenteral nutrition. The aim of the study was to evaluate the possibility of the concomitant administration of MTZ with PN admixtures from one container. METHODS: MTZ (1500 mg) was combined with six different PN admixtures and stored for 7 days before the simulation of administration. The mean droplet size (MDS) of the lipid emulsion, zeta potential, color, and pH of the tested samples were determined every 24 h. The content of MTZ was determined by the high-performance liquid chromatography method within the same time frames. RESULTS: PN admixtures supplemented with MTZ were characterized by a pH range from 6.19 to 6.38 and zeta potential range from -21.6 mV to -8.8 mV. For all samples the pharmacopeial criteria for intravenously administered emulsions were met: The visual inspection showed no sign of emulsion destabilization or precipitation, and the MDS was <500 nm. The MTZ content remained >90% of the initial value throughout the whole study period. CONCLUSIONS: Results showed the physicochemical compatibility and stability of PN admixtures supplemented with MTZ at the dose of 1500 mg. Such formulations can be stored at a temperature of 5°C for up to 7 d before administration to the patient.


Assuntos
Emulsões Gordurosas Intravenosas , Metronidazol , Humanos , Concentração de Íons de Hidrogênio , Nutrição Parenteral , Soluções de Nutrição Parenteral , Nutrição Parenteral Total
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa