Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(3): 655-674.e27, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497611

RESUMO

Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , DNA Helicases/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Esclerose Tuberosa/metabolismo , Sequência de Aminoácidos , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/química , Evolução Molecular , Feminino , Humanos , Insulina/farmacologia , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Proteínas de Ligação a Poli-ADP-Ribose/química , RNA Helicases/química , Proteínas com Motivo de Reconhecimento de RNA/química , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/metabolismo
2.
EMBO J ; 40(3): e103701, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33319920

RESUMO

SATB2 is a schizophrenia risk gene and is genetically associated with human intelligence. How it affects cognition at molecular level is currently unknown. Here, we show that interactions between SATB2, a chromosomal scaffolding protein, and the inner nuclear membrane protein LEMD2 orchestrate the response of pyramidal neurons to neuronal activation. Exposure to novel environment in vivo causes changes in nuclear shape of CA1 hippocampal neurons via a SATB2-dependent mechanism. The activity-driven plasticity of the nuclear envelope requires not only SATB2, but also its protein interactor LEMD2 and the ESCRT-III/VPS4 membrane-remodeling complex. Furthermore, LEMD2 depletion in cortical neurons, similar to SATB2 ablation, affects neuronal activity-dependent regulation of multiple rapid and delayed primary response genes. In human genetic data, LEMD2-regulated genes are enriched for de novo mutations reported in intellectual disability and schizophrenia and are, like SATB2-regulated genes, enriched for common variants associated with schizophrenia and cognitive function. Hence, interactions between SATB2 and the inner nuclear membrane protein LEMD2 influence gene expression programs in pyramidal neurons that are linked to cognitive ability and psychiatric disorder etiology.


Assuntos
Redes Reguladoras de Genes , Hipocampo/citologia , Deficiência Intelectual/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Esquizofrenia/genética , Fatores de Transcrição/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Núcleo Celular/metabolismo , Plasticidade Celular , Células Cultivadas , Cognição , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células HeLa , Hipocampo/metabolismo , Humanos , Deficiência Intelectual/metabolismo , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/química , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Esquizofrenia/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
3.
EMBO J ; 40(10): e106503, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33934390

RESUMO

The primary cilium is a microtubule-based sensory organelle that dynamically links signalling pathways to cell differentiation, growth, and development. Genetic defects of primary cilia are responsible for genetic disorders known as ciliopathies. Orofacial digital type I syndrome (OFDI) is an X-linked congenital ciliopathy caused by mutations in the OFD1 gene and characterized by malformations of the face, oral cavity, digits and, in the majority of cases, polycystic kidney disease. OFD1 plays a key role in cilium biogenesis. However, the impact of signalling pathways and the role of the ubiquitin-proteasome system (UPS) in the control of OFD1 stability remain unknown. Here, we identify a novel complex assembled at centrosomes by TBC1D31, including the E3 ubiquitin ligase praja2, protein kinase A (PKA), and OFD1. We show that TBC1D31 is essential for ciliogenesis. Mechanistically, upon G-protein-coupled receptor (GPCR)-cAMP stimulation, PKA phosphorylates OFD1 at ser735, thus promoting OFD1 proteolysis through the praja2-UPS circuitry. This pathway is essential for ciliogenesis. In addition, a non-phosphorylatable OFD1 mutant dramatically affects cilium morphology and dynamics. Consistent with a role of the TBC1D31/praja2/OFD1 axis in ciliogenesis, alteration of this molecular network impairs ciliogenesis in vivo in Medaka fish, resulting in developmental defects. Our findings reveal a multifunctional transduction unit at the centrosome that links GPCR signalling to ubiquitylation and proteolysis of the ciliopathy protein OFD1, with important implications on cilium biology and development. Derangement of this control mechanism may underpin human genetic disorders.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Humanos , Oryzias , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
4.
Brain ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743596

RESUMO

Protein Kinase A (PKA) neuronal function is controlled by the interaction of a regulatory (R) subunit dimer to two catalytic (C) subunits. Recently, the L50R variant in the gene encoding the RIß subunit was identified in individuals with a novel neurodegenerative disease. However, the mechanisms driving the disease phenotype remained unknown. In this study, we generated a mouse model carrying the RIß-L50R mutation to replicate the human disease phenotype and study its progression with age. We examined postmortem brains of affected individuals as well as live cell cultures. Employing biochemical assays, immunohistochemistry, and behavioral assessments, we investigated the impact of the mutation on PKA complex assembly, protein aggregation and neuronal degeneration. We reveal that RIß is an aggregation-prone protein that progressively accumulates in wildtype and Alzheimer's mouse models with age, while aggregation is accelerated in the RIß-L50R mouse model. We define RIß-L50R as a causal mutation driving an age-dependent behavioral and disease phenotype in human and mouse models. Mechanistically, this mutation disrupts RIß dimerization, leading to aggregation of its monomers. Intriguingly, interaction with the C-subunit protects the RIß-L50R from self-aggregating, in a dose-dependent manner. Furthermore, cAMP signaling induces RIß-L50R aggregation. The pathophysiological mechanism elucidated here for a newly recognized neurodegenerative disease, in which protein aggregation is the result of disrupted homodimerization, sheds light on a remarkably under-appreciated but potentially common mechanism across several neurodegenerative diseases.

5.
Cell Mol Life Sci ; 81(1): 162, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568213

RESUMO

Spatiotemporal-controlled second messengers alter molecular interactions of central signaling nodes for ensuring physiological signal transmission. One prototypical second messenger molecule which modulates kinase signal transmission is the cyclic-adenosine monophosphate (cAMP). The main proteinogenic cellular effectors of cAMP are compartmentalized protein kinase A (PKA) complexes. Their cell-type specific compositions precisely coordinate substrate phosphorylation and proper signal propagation which is indispensable for numerous cell-type specific functions. Here we present evidence that TAF15, which is implicated in the etiology of amyotrophic lateral sclerosis, represents a novel nuclear PKA substrate. In cross-linking and immunoprecipitation experiments (iCLIP) we showed that TAF15 phosphorylation alters the binding to target transcripts related to mRNA maturation, splicing and protein-binding related functions. TAF15 appears to be one of multiple PKA substrates that undergo RNA-binding dynamics upon phosphorylation. We observed that the activation of the cAMP-PKA signaling axis caused a change in the composition of a collection of RNA species that interact with TAF15. This observation appears to be a broader principle in the regulation of molecular interactions, as we identified a significant enrichment of RNA-binding proteins within endogenous PKA complexes. We assume that phosphorylation of RNA-binding domains adds another layer of regulation to binary protein-RNAs interactions with consequences to RNA features including binding specificities, localization, abundance and composition.


Assuntos
Esclerose Lateral Amiotrófica , Fatores Associados à Proteína de Ligação a TATA , Humanos , Proteínas Quinases Dependentes de AMP Cíclico , Fosforilação , AMP Cíclico , RNA
6.
Development ; 148(4)2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33531430

RESUMO

Hedgehog (Hh) ligands act as morphogens to direct patterning and proliferation during embryonic development. Protein kinase A (PKA) is a central negative regulator of Hh signalling, and in the absence of Hh ligands, PKA activity prevents inappropriate expression of Hh target genes. The orphan G-protein-coupled receptor Gpr161 contributes to the basal Hh repression machinery by activating PKA. Gpr161 acts as an A-kinase-anchoring protein, and is itself phosphorylated by PKA, but the functional significance of PKA phosphorylation of Gpr161 in the context of Hh signalling remains unknown. Here, we show that loss of Gpr161 in zebrafish leads to constitutive activation of medium and low, but not maximal, levels of Hh target gene expression. Furthermore, we find that PKA phosphorylation-deficient forms of Gpr161, which we show directly couple to Gαs, display an increased sensitivity to Shh, resulting in excess high-level Hh signalling. Our results suggest that PKA feedback-mediated phosphorylation of Gpr161 may provide a mechanism for fine-tuning Gpr161 ciliary localisation and PKA activity.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Retroalimentação Fisiológica , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Peixe-Zebra/fisiologia , Animais , Evolução Biológica , Cílios/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Desenvolvimento Embrionário/genética , Proteínas Hedgehog/genética , Mutação , Fenótipo , Receptores Acoplados a Proteínas G/genética
7.
Angew Chem Int Ed Engl ; 63(9): e202316273, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38185473

RESUMO

Large RNAs are central to cellular functions, but characterizing such RNAs remains challenging by solution NMR. We present two labeling technologies based on [2-19 F, 2-13 C]-adenosine, which allow the incorporation of aromatic 19 F-13 C spin pairs. The labels when coupled with the transverse relaxation optimized spectroscopy (TROSY) enable us to probe RNAs comprising up to 124 nucleotides. With our new [2-19 F, 2-13 C]-adenosine-phosphoramidite, all resonances of the human hepatitis B virus epsilon RNA could be readily assigned. With [2-19 F, 2-13 C]-adenosine triphosphate, the 124 nt pre-miR-17-NPSL1-RNA was produced via in vitro transcription and the TROSY spectrum of this 40 kDa [2-19 F, 2-13 C]-A-labeled RNA featured sharper resonances than the [2-1 H, 2-13 C]-A sample. The mutual cancelation of the chemical-shift-anisotropy and the dipole-dipole-components of TROSY-resonances leads to narrow linewidths over a wide range of molecular weights. With the synthesis of a non-hydrolysable [2-19 F, 2-13 C]-adenosine-triphosphate, we facilitate the probing of co-factor binding in kinase complexes and NMR-based inhibitor binding studies in such systems. Our labels allow a straightforward assignment for larger RNAs via a divide-and-conquer/mutational approach. The new [2-19 F, 2-13 C]-adenosine precursors are a valuable addition to the RNA NMR toolbox and will allow the study of large RNAs/RNA protein complexes in vitro and in cells.


Assuntos
Adenosina , RNA , Humanos , Espectroscopia de Ressonância Magnética/métodos , RNA/química , Nucleotídeos , Trifosfato de Adenosina , Ressonância Magnética Nuclear Biomolecular/métodos
8.
Proc Natl Acad Sci U S A ; 117(49): 31105-31113, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229534

RESUMO

Kinase-targeted therapies have the potential to improve the survival of patients with cancer. However, the cancer-specific spectrum of kinase alterations exhibits distinct functional properties and requires mutation-oriented drug treatments. Besides post-translational modifications and diverse intermolecular interactions of kinases, it is the distinct disease mutation which reshapes full-length kinase conformations, affecting their activity. Oncokinase mutation profiles differ between cancer types, as it was shown for BRAF in melanoma and non-small-cell lung cancers. Here, we present the target-oriented application of a kinase conformation (KinCon) reporter platform for live-cell measurements of autoinhibitory kinase activity states. The bioluminescence-based KinCon biosensor allows the tracking of conformation dynamics of full-length kinases in intact cells and real time. We show that the most frequent BRAF cancer mutations affect kinase conformations and thus the engagement and efficacy of V600E-specific BRAF inhibitors (BRAFi). We illustrate that the patient mutation harboring KinCon reporters display differences in the effectiveness of the three clinically approved BRAFi vemurafenib, encorafenib, and dabrafenib and the preclinical paradox breaker PLX8394. We confirmed KinCon-based drug efficacy predictions for BRAF mutations other than V600E in proliferation assays using patient-derived lung cancer cell lines and by analyzing downstream kinase signaling. The systematic implementation of such conformation reporters will allow to accelerate the decision process for the mutation-oriented RAF-kinase cancer therapy. Moreover, we illustrate that the presented kinase reporter concept can be extended to other kinases which harbor patient mutations. Overall, KinCon profiling provides additional mechanistic insights into full-length kinase functions by reporting protein-protein interaction (PPI)-dependent, mutation-specific, and drug-driven changes of kinase activity conformations.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Conformação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Células A549 , Carbamatos/química , Carbamatos/farmacologia , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Imidazóis/química , Imidazóis/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação/efeitos dos fármacos , Oximas/química , Oximas/farmacologia , Fosfotransferases/antagonistas & inibidores , Fosfotransferases/ultraestrutura , Inibidores de Proteínas Quinases/química , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/genética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/ultraestrutura , Sulfonamidas/química , Sulfonamidas/farmacologia , Vemurafenib/química , Vemurafenib/farmacologia
9.
Pflugers Arch ; 472(1): 3-25, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31848688

RESUMO

Cav1.3 L-type Ca2+ channels (LTCCs) in cochlear inner hair cells (IHCs) are essential for hearing as they convert sound-induced graded receptor potentials into tonic postsynaptic glutamate release. To enable fast and indefatigable presynaptic Ca2+ signaling, IHC Cav1.3 channels exhibit a negative activation voltage range and uniquely slow inactivation kinetics. Interaction with CaM-like Ca2+-binding proteins inhibits Ca2+-dependent inactivation, while the mechanisms underlying slow voltage-dependent inactivation (VDI) are not completely understood. Here we studied if the complex formation of Cav1.3 LTCCs with the presynaptic active zone proteins RIM2α and RIM-binding protein 2 (RBP2) can stabilize slow VDI. We detected both RIM2α and RBP isoforms in adult mouse IHCs, where they co-localized with Cav1.3 and synaptic ribbons. Using whole-cell patch-clamp recordings (tsA-201 cells), we assessed their effect on the VDI of the C-terminal full-length Cav1.3 (Cav1.3L) and a short splice variant (Cav1.342A) that lacks the C-terminal RBP2 interaction site. When co-expressed with the auxiliary ß3 subunit, RIM2α alone (Cav1.342A) or RIM2α/RBP2 (Cav1.3L) reduced Cav1.3 VDI to a similar extent as observed in IHCs. Membrane-anchored ß2 variants (ß2a, ß2e) that inhibit inactivation on their own allowed no further modulation of inactivation kinetics by RIM2α/RBP2. Moreover, association with RIM2α and/or RBP2 consolidated the negative Cav1.3 voltage operating range by shifting the channel's activation threshold toward more hyperpolarized potentials. Taken together, the association with "slow" ß subunits (ß2a, ß2e) or presynaptic scaffolding proteins such as RIM2α and RBP2 stabilizes physiological gating properties of IHC Cav1.3 LTCCs in a splice variant-dependent manner ensuring proper IHC function.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Potenciais de Ação , Animais , Sítios de Ligação , Canais de Cálcio Tipo L/química , Feminino , Células HEK293 , Células Ciliadas Auditivas Internas/fisiologia , Humanos , Ativação do Canal Iônico , Masculino , Camundongos , Ligação Proteica
10.
IUBMB Life ; 72(6): 1168-1174, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32027084

RESUMO

The spectrum of kinase alterations displays distinct functional characteristics and requires kinase mutation-oriented strategies for therapeutic interference. Besides phosphotransferase activity, protein abundance, and intermolecular interactions, particular patient-mutations promote pathological kinase conformations. Despite major advances in identifying lead molecules targeting clinically relevant oncokinase functions, still many kinases are neglected and not part of drug discovery efforts. One explanation is attributed to challenges in tracking kinase activities. Chemical probes are needed to functionally annotate kinase functions, whose activities may not always depend on catalyzing phospho-transfer. Such non-catalytic kinase functions are related to transitions of full-length kinase conformations. Recent findings underline that cell-based reporter systems can be adapted to record conformation changes of kinases. Here, we discuss the possible applications of an extendable kinase conformation (KinCon) reporter toolbox for live-cell recording of kinase states. KinCon is a genetically encoded bioluminescence-based biosensor platform, which can be subjected for measurements of conformation dynamics of mutated kinases upon small molecule inhibitor exposure. We hypothesize that such biosensors can be utilized to delineate the molecular modus operandi for kinase and pseudokinase regulation. This should pave the path for full-length kinase-targeted drug discovery efforts aiming to identify single and combinatory kinase inhibitor therapies with increased specificity and efficacy.


Assuntos
Biologia Molecular/métodos , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Técnicas Biossensoriais , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes , Conformação Proteica , Proteínas Quinases/genética
11.
J Biol Chem ; 293(12): 4411-4421, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29378851

RESUMO

cAMP-dependent protein kinase (PKAc) is a pivotal signaling protein in eukaryotic cells. PKAc has two well-characterized regulatory subunit proteins, RI and RII (each having α and ß isoforms), which keep the PKAc catalytic subunit in a catalytically inactive state until activation by cAMP. Previous reports showed that the RIα regulatory subunit is phosphorylated by cGMP-dependent protein kinase (PKG) in vitro, whereupon phosphorylated RIα no longer inhibits PKAc at normal (1:1) stoichiometric ratios. However, the significance of this phosphorylation as a mechanism for activating type I PKA holoenzymes has not been fully explored, especially in cellular systems. In this study, we further examined the potential of RIα phosphorylation to regulate physiologically relevant "desensitization" of PKAc activity. First, the serine 101 site of RIα was validated as a target of PKGIα phosphorylation both in vitro and in cells. Analysis of a phosphomimetic substitution in RIα (S101E) showed that modification of this site increases PKAc activity in vitro and in cells, even without cAMP stimulation. Numerous techniques were used to show that although Ser101 variants of RIα can bind PKAc, the modified linker region of the S101E mutant has a significantly reduced affinity for the PKAc active site. These findings suggest that RIα phosphorylation may be a novel mechanism to circumvent the requirement of cAMP stimulus to activate type I PKA in cells. We have thus proposed a model to explain how PKG phosphorylation of RIα creates a "sensitized intermediate" state that is in effect primed to trigger PKAc activity.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Sítios de Ligação , Domínio Catalítico , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/genética , Células HEK293 , Humanos , Fosforilação , Ligação Proteica
12.
Proc Natl Acad Sci U S A ; 113(28): 7786-91, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27357676

RESUMO

Scaffolding proteins organize the information flow from activated G protein-coupled receptors (GPCRs) to intracellular effector cascades both spatially and temporally. By this means, signaling scaffolds, such as A-kinase anchoring proteins (AKAPs), compartmentalize kinase activity and ensure substrate selectivity. Using a phosphoproteomics approach we identified a physical and functional connection between protein kinase A (PKA) and Gpr161 (an orphan GPCR) signaling. We show that Gpr161 functions as a selective high-affinity AKAP for type I PKA regulatory subunits (RI). Using cell-based reporters to map protein-protein interactions, we discovered that RI binds directly and selectively to a hydrophobic protein-protein interaction interface in the cytoplasmic carboxyl-terminal tail of Gpr161. Furthermore, our data demonstrate that a binary complex between Gpr161 and RI promotes the compartmentalization of Gpr161 to the plasma membrane. Moreover, we show that Gpr161, functioning as an AKAP, recruits PKA RI to primary cilia in zebrafish embryos. We also show that Gpr161 is a target of PKA phosphorylation, and that mutation of the PKA phosphorylation site affects ciliary receptor localization. Thus, we propose that Gpr161 is itself an AKAP and that the cAMP-sensing Gpr161:PKA complex acts as cilium-compartmentalized signalosome, a concept that now needs to be considered in the analyzing, interpreting, and pharmaceutical targeting of PKA-associated functions.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteína Quinase Tipo I Dependente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Luciferases de Renilla , Camundongos , Fosforilação , Peixe-Zebra
13.
Curr Top Microbiol Immunol ; 407: 117-151, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28466200

RESUMO

The prototypes of the human MYC and RAF gene families are orthologs of animal proto-oncogenes that were originally identified as transduced alleles in the genomes of highly oncogenic retroviruses. MYC and RAF genes are now established as key regulatory elements in normal cellular physiology, but also as major cancer driver genes. Although the predominantly nuclear MYC proteins and the cytoplasmic RAF proteins have different biochemical functions, they are functionally linked in pivotal signaling cascades and circuits. The MYC protein is a transcription factor and together with its dimerization partner MAX holds a central position in a regulatory network of bHLH-LZ proteins. MYC regulates transcription conducted by all RNA polymerases and controls virtually the entire transcriptome. Fundamental cellular processes including distinct catabolic and anabolic branches of metabolism, cell cycle regulation, cell growth and proliferation, differentiation, stem cell regulation, and apoptosis are under MYC control. Deregulation of MYC expression by rearrangement or amplification of the MYC locus or by defects in kinase-mediated upstream signaling, accompanied by loss of apoptotic checkpoints, leads to tumorigenesis and is a hallmark of most human cancers. The critically controlled serine/threonine RAF kinases are central nodes of the cytoplasmic MAPK signaling cascade transducing converted extracellular signals to the nucleus for reshaping transcription factor controlled gene expression profiles. Specific mutations of RAF kinases, such as the prevalent BRAF(V600E) mutation in melanoma, or defects in upstream signaling or feedback loops cause decoupled kinase activities which lead to tumorigenesis. Different strategies for pharmacological interference with MYC- or RAF-induced tumorigenesis are being developed and several RAF kinase inhibitors are already in clinical use.


Assuntos
Carcinogênese , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Animais , Humanos , Neoplasias/genética , Neoplasias/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-myc/genética
14.
Proc Natl Acad Sci U S A ; 112(14): 4501-6, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831502

RESUMO

Cellular processes and homeostasis control in eukaryotic cells is achieved by the action of regulatory proteins such as protein kinase A (PKA). Although the outbound signals from PKA directed to processes such as metabolism, growth, and aging have been well charted, what regulates this conserved regulator remains to be systematically identified to understand how it coordinates biological processes. Using a yeast PKA reporter assay, we identified genes that influence PKA activity by measuring protein-protein interactions between the regulatory and the two catalytic subunits of the PKA complex in 3,726 yeast genetic-deletion backgrounds grown on two carbon sources. Overall, nearly 500 genes were found to be connected directly or indirectly to PKA regulation, including 80 core regulators, denoting a wide diversity of signals regulating PKA, within and beyond the described upstream linear pathways. PKA regulators span multiple processes, including the antagonistic autophagy and methionine biosynthesis pathways. Our results converge toward mechanisms of PKA posttranslational regulation by lysine acetylation, which is conserved between yeast and humans and that, we show, regulates protein complex formation in mammals and carbohydrate storage and aging in yeast. Taken together, these results show that the extent of PKA input matches with its output, because this kinase receives information from upstream and downstream processes, and highlight how biological processes are interconnected and coordinated by PKA.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transdução de Sinais , Acetilação , Sequência de Aminoácidos , Animais , Autofagia , AMP Cíclico/metabolismo , Galactose/química , Glucose/química , Células HEK293 , Homeostase , Humanos , Luciferases de Renilla/metabolismo , Metionina/química , Dados de Sequência Molecular , Filogenia , Processamento de Proteína Pós-Traducional , Ratos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Serina-Treonina Quinases TOR/metabolismo
15.
Proc Natl Acad Sci U S A ; 111(34): 12556-61, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25114221

RESUMO

In a fluorescence polarization screen for the MYC-MAX interaction, we have identified a novel small-molecule inhibitor of MYC, KJ-Pyr-9, from a Kröhnke pyridine library. The Kd of KJ-Pyr-9 for MYC in vitro is 6.5 ± 1.0 nM, as determined by backscattering interferometry; KJ-Pyr-9 also interferes with MYC-MAX complex formation in the cell, as shown in a protein fragment complementation assay. KJ-Pyr-9 specifically inhibits MYC-induced oncogenic transformation in cell culture; it has no or only weak effects on the oncogenic activity of several unrelated oncoproteins. KJ-Pyr-9 preferentially interferes with the proliferation of MYC-overexpressing human and avian cells and specifically reduces the MYC-driven transcriptional signature. In vivo, KJ-Pyr-9 effectively blocks the growth of a xenotransplant of MYC-amplified human cancer cells.


Assuntos
Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Piridinas/farmacologia , Pirimidinas/farmacologia , Animais , Antineoplásicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Células Cultivadas , Embrião de Galinha , Avaliação Pré-Clínica de Medicamentos , Feminino , Polarização de Fluorescência , Genes myc , Humanos , Interferometria , Camundongos , Camundongos Nus , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/química , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/química , Piridinas/química , Pirimidinas/química , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Proc Natl Acad Sci U S A ; 110(21): 8531-6, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23657011

RESUMO

Activated G protein-coupled receptors (GPCRs) and receptor tyrosine kinases relay extracellular signals through spatial and temporal controlled kinase and GTPase entities. These enzymes are coordinated by multifunctional scaffolding proteins for precise intracellular signal processing. The cAMP-dependent protein kinase A (PKA) is the prime example for compartmentalized signal transmission downstream of distinct GPCRs. A-kinase anchoring proteins tether PKA to specific intracellular sites to ensure precision and directionality of PKA phosphorylation events. Here, we show that the Rho-GTPase Rac contains A-kinase anchoring protein properties and forms a dynamic cellular protein complex with PKA. The formation of this transient core complex depends on binary interactions with PKA subunits, cAMP levels and cellular GTP-loading accounting for bidirectional consequences on PKA and Rac downstream signaling. We show that GTP-Rac stabilizes the inactive PKA holoenzyme. However, ß-adrenergic receptor-mediated activation of GTP-Rac-bound PKA routes signals to the Raf-Mek-Erk cascade, which is critically implicated in cell proliferation. We describe a further mechanism of how cAMP enhances nuclear Erk1/2 signaling: It emanates from transphosphorylation of p21-activated kinases in their evolutionary conserved kinase-activation loop through GTP-Rac compartmentalized PKA activities. Sole transphosphorylation of p21-activated kinases is not sufficient to activate Erk1/2. It requires complex formation of both kinases with GTP-Rac1 to unleash cAMP-PKA-boosted activation of Raf-Mek-Erk. Consequently GTP-Rac functions as a dual kinase-tuning scaffold that favors the PKA holoenzyme and contributes to potentiate Erk1/2 signaling. Our findings offer additional mechanistic insights how ß-adrenergic receptor-controlled PKA activities enhance GTP-Rac-mediated activation of nuclear Erk1/2 signaling.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Complexos Multienzimáticos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Feminino , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Complexos Multienzimáticos/genética , Fosforilação/fisiologia , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Quinases raf/genética , Quinases raf/metabolismo
17.
Development ; 139(15): 2711-20, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22782722

RESUMO

The Hedgehog (Hh) pathway plays dual roles in proliferation and patterning during embryonic development, but the mechanism(s) that distinguish the mitogenic and patterning activities of Hh signalling are not fully understood. An additional level of complexity is provided by the observation that Hh signalling can both promote and inhibit cell proliferation. One model to account for this apparent paradox is that Hh signalling primarily regulates cell cycle kinetics, such that activation of Hh signalling promotes fast cycling and an earlier cell cycle exit. Here we report that activation of Hh signalling promotes endodermal cell proliferation but inhibits proliferation in neighbouring non-endodermal cells, suggesting that the cell cycle kinetics model is insufficient to account for the opposing proliferative responses to Hh signalling. We show that expression of the chemokine receptor Cxcr4a is a critical parameter that determines the proliferative response to Hh signalling, and that loss of Cxcr4a function attenuates the transcription of cell cycle regulator targets of Hh signalling without affecting general transcriptional targets. We show that Cxcr4a inhibits PKA activity independently of Hh signalling, and propose that Cxcr4a enhances Hh-dependent proliferation by promoting the activity of Gli1. Our results indicate that Cxcr4a is required for Hh-dependent cell proliferation but not for Hh-dependent patterning, and suggest that the parallel activation of Cxcr4a is required to modulate the Hh pathway to distinguish between patterning and proliferation.


Assuntos
Endoderma/metabolismo , Receptores CXCR4/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Alelos , Animais , Padronização Corporal , Proliferação de Células , Cruzamentos Genéticos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Endoderma/citologia , Proteínas de Fluorescência Verde/metabolismo , Proteínas Hedgehog/metabolismo , Cinética , Camundongos , Crista Neural/citologia , RNA Mensageiro/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Transcrição Gênica , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
18.
Nat Struct Mol Biol ; 31(4): 667-677, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326651

RESUMO

The orphan G protein-coupled receptor (GPCR) GPR161 plays a central role in development by suppressing Hedgehog signaling. The fundamental basis of how GPR161 is activated remains unclear. Here, we determined a cryogenic-electron microscopy structure of active human GPR161 bound to heterotrimeric Gs. This structure revealed an extracellular loop 2 that occupies the canonical GPCR orthosteric ligand pocket. Furthermore, a sterol that binds adjacent to transmembrane helices 6 and 7 stabilizes a GPR161 conformation required for Gs coupling. Mutations that prevent sterol binding to GPR161 suppress Gs-mediated signaling. These mutants retain the ability to suppress GLI2 transcription factor accumulation in primary cilia, a key function of ciliary GPR161. By contrast, a protein kinase A-binding site in the GPR161 C terminus is critical in suppressing GLI2 ciliary accumulation. Our work highlights how structural features of GPR161 interface with the Hedgehog pathway and sets a foundation to understand the role of GPR161 function in other signaling pathways.


Assuntos
Proteínas Hedgehog , Transdução de Sinais , Humanos , Proteínas Hedgehog/genética , Receptores Acoplados a Proteínas G/metabolismo , Mutação , Cílios/metabolismo
19.
Commun Biol ; 6(1): 720, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443295

RESUMO

We report an Osprey-based computational protocol to prospectively identify oncogenic mutations that act via disruption of molecular interactions. It is applicable to analyse both protein-protein and protein-DNA interfaces and it is validated on a dataset of clinically relevant mutations. In addition, it is used to predict previously uncharacterised patient mutations in CDK6 and p16 genes, which are experimentally confirmed to impair complex formation.


Assuntos
DNA , Proteínas , Humanos , Proteínas/genética , Mutação , DNA/genética
20.
PNAS Nexus ; 2(6): pgad185, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325027

RESUMO

The selective targeting of mutated kinases in cancer therapies has the potential to improve therapeutic success and thereby the survival of patients. In the case of melanoma, the constitutively active MAPK pathway is targeted by a combinatorial inhibition of BRAF and MEK activities. These MAPK pathway players may display patient-specific differences in the onco-kinase mutation spectrum, which needs to be considered for the design of more efficient personalized therapies. Here, we extend a bioluminescence-based kinase conformation biosensor (KinCon) to allow for live-cell tracking of interconnected kinase activity states. First, we show that common MEK1 patient mutations promote a structural rearrangement of the kinase to an opened and active conformation. This effect was reversible by the binding of MEK inhibitors to mutated MEK1, as shown in biosensor assays and molecular dynamics simulations. Second, we implement a novel application of the KinCon technology for tracking the simultaneous, vertical targeting of the two functionally linked kinases BRAF and MEK1. Thus, we demonstrate that, in the presence of constitutively active BRAF-V600E, specific inhibitors of both kinases are efficient in driving MEK1 into a closed, inactive conformation state. We compare current melanoma treatments and show that combinations of BRAFi and MEKi display a more pronounced structural change of the drug sensor than the respective single agents, thereby identifying synergistic effects among these drug combinations. In summary, we depict the extension of the KinCon biosensor technology to systematically validate, anticipate, and personalize tailored drug arrangements using a multiplexed setup.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa