Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell ; 174(4): 831-842.e12, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30057115

RESUMO

Overnutrition disrupts circadian metabolic rhythms by mechanisms that are not well understood. Here, we show that diet-induced obesity (DIO) causes massive remodeling of circadian enhancer activity in mouse liver, triggering synchronous high-amplitude circadian rhythms of both fatty acid (FA) synthesis and oxidation. SREBP expression was rhythmically induced by DIO, leading to circadian FA synthesis and, surprisingly, FA oxidation (FAO). DIO similarly caused a high-amplitude circadian rhythm of PPARα, which was also required for FAO. Provision of a pharmacological activator of PPARα abrogated the requirement of SREBP for FAO (but not FA synthesis), suggesting that SREBP indirectly controls FAO via production of endogenous PPARα ligands. The high-amplitude rhythm of PPARα imparted time-of-day-dependent responsiveness to lipid-lowering drugs. Thus, acquisition of rhythmicity for non-core clock components PPARα and SREBP1 remodels metabolic gene transcription in response to overnutrition and enables a chronopharmacological approach to metabolic disorders.


Assuntos
Ritmo Circadiano , Dieta/efeitos adversos , Fígado/metabolismo , Obesidade/metabolismo , PPAR alfa/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Lipogênese , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/patologia , PPAR alfa/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
2.
Cell ; 162(1): 33-44, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26140591

RESUMO

SNPs affecting disease risk often reside in non-coding genomic regions. Here, we show that SNPs are highly enriched at mouse strain-selective adipose tissue binding sites for PPARγ, a nuclear receptor for anti-diabetic drugs. Many such SNPs alter binding motifs for PPARγ or cooperating factors and functionally regulate nearby genes whose expression is strain selective and imbalanced in heterozygous F1 mice. Moreover, genetically determined binding of PPARγ accounts for mouse strain-specific transcriptional effects of TZD drugs, providing proof of concept for personalized medicine related to nuclear receptor genomic occupancy. In human fat, motif-altering SNPs cause differential PPARγ binding, provide a molecular mechanism for some expression quantitative trait loci, and are risk factors for dysmetabolic traits in genome-wide association studies. One PPARγ motif-altering SNP is associated with HDL levels and other metabolic syndrome parameters. Thus, natural genetic variation in PPARγ genomic occupancy determines individual disease risk and drug response.


Assuntos
Hipoglicemiantes/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Polimorfismo de Nucleotídeo Único , Tecido Adiposo , Animais , Expressão Gênica , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Fatores de Transcrição/metabolismo
3.
Genes Dev ; 36(5-6): 300-312, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35273075

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that is a vital regulator of adipogenesis, insulin sensitivity, and lipid metabolism. Activation of PPARγ by antidiabetic thiazolidinediones (TZD) reverses insulin resistance but also leads to weight gain that limits the use of these drugs. There are two main PPARγ isoforms, but the specific functions of each are not established. Here we generated mouse lines in which endogenous PPARγ1 and PPARγ2 were epitope-tagged to interrogate isoform-specific genomic binding, and mice deficient in either PPARγ1 or PPARγ2 to assess isoform-specific gene regulation. Strikingly, although PPARγ1 and PPARγ2 contain identical DNA binding domains, we uncovered isoform-specific genomic binding sites in addition to shared sites. Moreover, PPARγ1 and PPARγ2 regulated a different set of genes in adipose tissue depots, suggesting distinct roles in adipocyte biology. Indeed, mice with selective deficiency of PPARγ1 maintained body temperature better than wild-type or PPARγ2-deficient mice. Most remarkably, although TZD treatment improved glucose tolerance in mice lacking either PPARγ1 or PPARγ2, the PPARγ1-deficient mice were protected from TZD-induced body weight gain compared with PPARγ2-deficient mice. Thus, PPARγ isoforms have specific and separable metabolic functions that may be targeted to improve therapy for insulin resistance and diabetes.


Assuntos
Resistência à Insulina , Tiazolidinedionas , Adipócitos/metabolismo , Animais , Regulação da Expressão Gênica , Resistência à Insulina/genética , Camundongos , PPAR gama/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
New Phytol ; 239(2): 533-546, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37235688

RESUMO

Trees remain sufficiently hydrated during drought by closing stomata and reducing canopy conductance (Gc ) in response to variations in atmospheric water demand and soil water availability. Thresholds that control the reduction of Gc are proposed to optimize hydraulic safety against carbon assimilation efficiency. However, the link between Gc and the ability of stem tissues to rehydrate at night remains unclear. We investigated whether species-specific Gc responses aim to prevent branch embolisms, or enable night-time stem rehydration, which is critical for turgor-dependent growth. For this, we used a unique combination of concurrent dendrometer, sap flow and leaf water potential measurements and collected branch-vulnerability curves of six common European tree species. Species-specific Gc reduction was weakly related to the water potentials at which 50% of branch xylem conductivity is lost (P50 ). Instead, we found a stronger relationship with stem rehydration. Species with a stronger Gc control were less effective at refilling stem-water storage as the soil dries, which appeared related to their xylem architecture. Our findings highlight the importance of stem rehydration for water-use regulation in mature trees, which likely relates to the maintenance of adequate stem turgor. We thus conclude that stem rehydration must complement the widely accepted safety-efficiency stomatal control paradigm.


Assuntos
Folhas de Planta , Árvores , Árvores/fisiologia , Folhas de Planta/fisiologia , Xilema/fisiologia , Água/fisiologia , Secas , Hidratação
5.
Nature ; 546(7659): 544-548, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28614293

RESUMO

Brown adipose tissue is a thermogenic organ that dissipates chemical energy as heat to protect animals against hypothermia and to counteract metabolic disease. However, the transcriptional mechanisms that determine the thermogenic capacity of brown adipose tissue before environmental cold are unknown. Here we show that histone deacetylase 3 (HDAC3) is required to activate brown adipose tissue enhancers to ensure thermogenic aptitude. Mice with brown adipose tissue-specific genetic ablation of HDAC3 become severely hypothermic and succumb to acute cold exposure. Uncoupling protein 1 (UCP1) is nearly absent in brown adipose tissue lacking HDAC3, and there is also marked downregulation of mitochondrial oxidative phosphorylation genes resulting in diminished mitochondrial respiration. Remarkably, although HDAC3 acts canonically as a transcriptional corepressor, it functions as a coactivator of oestrogen-related receptor α (ERRα) in brown adipose tissue. HDAC3 coactivation of ERRα is mediated by deacetylation of PGC-1α and is required for the transcription of Ucp1, Ppargc1a (encoding PGC-1α), and oxidative phosphorylation genes. Importantly, HDAC3 promotes the basal transcription of these genes independently of adrenergic stimulation. Thus, HDAC3 uniquely primes Ucp1 and the thermogenic transcriptional program to maintain a critical capacity for thermogenesis in brown adipose tissue that can be rapidly engaged upon exposure to dangerously cold temperature.


Assuntos
Tecido Adiposo Marrom/metabolismo , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Termogênese , Animais , Respiração Celular , Temperatura Baixa , Elementos Facilitadores Genéticos/genética , Temperatura Alta , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores de Estrogênio/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
6.
Genes Dev ; 29(3): 298-307, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25644604

RESUMO

PR (PRD1-BF1-RIZ1 homologous) domain-containing 16 (PRDM16) drives a brown fat differentiation program, but the mechanisms by which PRDM16 activates brown fat-selective genes have been unclear. Through chromatin immunoprecipitation (ChIP) followed by deep sequencing (ChIP-seq) analyses in brown adipose tissue (BAT), we reveal that PRDM16 binding is highly enriched at a broad set of brown fat-selective genes. Importantly, we found that PRDM16 physically binds to MED1, a component of the Mediator complex, and recruits it to superenhancers at brown fat-selective genes. PRDM16 deficiency in BAT reduces MED1 binding at PRDM16 target sites and causes a fundamental change in chromatin architecture at key brown fat-selective genes. Together, these data indicate that PRDM16 controls chromatin architecture and superenhancer activity in BAT.


Assuntos
Tecido Adiposo Marrom/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Subunidade 1 do Complexo Mediador/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Animais , Cromatina/química , Cromatina/genética , Elementos Facilitadores Genéticos , Camundongos
7.
Rapid Commun Mass Spectrom ; 36(13): e9296, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35289456

RESUMO

RATIONALE: Information on the isotopic composition of nitrous oxide (N2 O) at natural abundance supports the identification of its source and sink processes. In recent years, a number of mass spectrometric and laser spectroscopic techniques have been developed and are increasingly used by the research community. Advances in this active research area, however, critically depend on the availability of suitable N2 O isotope Reference Materials (RMs). METHODS: Within the project Metrology for Stable Isotope Reference Standards (SIRS), seven pure N2 O isotope RMs have been developed and their 15 N/14 N, 18 O/16 O, 17 O/16 O ratios and 15 N site preference (SP) have been analysed by specialised laboratories against isotope reference materials. A particular focus was on the 15 N site-specific isotopic composition, as this measurand is both highly diagnostic for source appointment and challenging to analyse and link to existing scales. RESULTS: The established N2 O isotope RMs offer a wide spread in delta (δ) values: δ15 N: 0 to +104‰, δ18 O: +39 to +155‰, and δ15 NSP : -4 to +20‰. Conversion and uncertainty propagation of δ15 N and δ18 O to the Air-N2 and VSMOW scales, respectively, provides robust estimates for δ15 N(N2 O) and δ18 O(N2 O), with overall uncertainties of about 0.05‰ and 0.15‰, respectively. For δ15 NSP , an offset of >1.5‰ compared with earlier calibration approaches was detected, which should be revisited in the future. CONCLUSIONS: A set of seven N2 O isotope RMs anchored to the international isotope-ratio scales was developed that will promote the implementation of the recommended two-point calibration approach. Particularly, the availability of δ17 O data for N2 O RMs is expected to improve data quality/correction algorithms with respect to δ15 NSP and δ15 N analysis by mass spectrometry. We anticipate that the N2 O isotope RMs will enhance compatibility between laboratories and accelerate research progress in this emerging field.


Assuntos
Óxido Nitroso , Calibragem , Espectrometria de Massas/métodos , Óxido Nitroso/análise , Isótopos de Oxigênio/análise , Padrões de Referência
8.
Genes Dev ; 28(9): 1018-28, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24788520

RESUMO

Rosiglitazone (rosi) is a powerful insulin sensitizer, but serious toxicities have curtailed its widespread clinical use. Rosi functions as a high-affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ), the adipocyte-predominant nuclear receptor (NR). The classic model, involving binding of ligand to the NR on DNA, explains positive regulation of gene expression, but ligand-dependent repression is not well understood. We addressed this issue by studying the direct effects of rosi on gene transcription using global run-on sequencing (GRO-seq). Rosi-induced changes in gene body transcription were pronounced after 10 min and correlated with steady-state mRNA levels as well as with transcription at nearby enhancers (enhancer RNAs [eRNAs]). Up-regulated eRNAs occurred almost exclusively at PPARγ-binding sites, to which rosi treatment recruited coactivators, including MED1, p300, and CBP. In contrast, transcriptional repression by rosi involved a loss of coactivators from eRNA sites devoid of PPARγ and enriched for other transcription factors, including AP-1 factors and C/EBPs. Thus, rosi activates and represses transcription by fundamentally different mechanisms that could inform the future development of anti-diabetic drugs.


Assuntos
Adipócitos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipoglicemiantes/farmacologia , PPAR gama/metabolismo , Tiazolidinedionas/farmacologia , Células 3T3-L1 , Animais , Humanos , Subunidade 1 do Complexo Mediador/metabolismo , Camundongos , Ligação Proteica , Rosiglitazona , Transcriptoma
9.
Nucleic Acids Res ; 46(16): 8371-8384, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30085281

RESUMO

Sequence-specific DNA binding recruits transcription factors (TFs) to the genome to regulate gene expression. Here, we perform high resolution mapping of CEBP proteins to determine how sequence dictates genomic occupancy. We demonstrate a fundamental difference between the sequence repertoire utilized by CEBPs in vivo versus the palindromic sequence preference reported by classical in vitro models, by identifying a palindromic motif at <1% of the genomic binding sites. On the native genome, CEBPs bind a diversity of related 10 bp sequences resulting from the fusion of degenerate and canonical half-sites. Altered DNA specificity of CEBPs in cells occurs through heterodimerization with other bZip TFs, and approximately 40% of CEBP-binding sites in primary human cells harbor motifs characteristic of CEBP heterodimers. In addition, we uncover an important role for sequence bias at core-motif-flanking bases for CEBPs and demonstrate that flanking bases regulate motif function across mammalian bZip TFs. Favorable flanking bases confer efficient TF occupancy and transcriptional activity, and DNA shape may explain how the flanks alter TF binding. Importantly, motif optimization within the 10-mer is strongly correlated with cell-type-independent recruitment of CEBPß, providing key insight into how sequence sub-optimization affects genomic occupancy of widely expressed CEBPs across cell types.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/química , Motivos de Nucleotídeos , Transcrição Gênica , Animais , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Sítios de Ligação , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Imunoprecipitação da Cromatina , Dimerização , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Organismos Livres de Patógenos Específicos , Relação Estrutura-Atividade , Especificidade por Substrato
10.
Genes Dev ; 25(23): 2480-8, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22156208

RESUMO

Macrophages, a key cellular component of inflammation, become functionally polarized in a signal- and context-specific manner. Th2 cytokines such as interleukin 4 (IL-4) polarize macrophages to a state of alternative activation that limits inflammation and promotes wound healing. Alternative activation is mediated by a transcriptional program that is influenced by epigenomic modifications, including histone acetylation. Here we report that macrophages lacking histone deacetylase 3 (HDAC3) display a polarization phenotype similar to IL-4-induced alternative activation and, furthermore, are hyperresponsive to IL-4 stimulation. Throughout the macrophage genome, HDAC3 deacetylates histone tails at regulatory regions, leading to repression of many IL-4-regulated genes characteristic of alternative activation. Following exposure to Schistosoma mansoni eggs, a model of Th2 cytokine-mediated disease that is limited by alternative activation, pulmonary inflammation was ameliorated in mice lacking HDAC3 in macrophages. Thus, HDAC3 functions in alternative activation as a brake whose release could be of benefit in the treatment of multiple inflammatory diseases.


Assuntos
Epigênese Genética , Histona Desacetilases/genética , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Animais , Histona Desacetilases/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos , Pneumonia/enzimologia , Pneumonia/imunologia , Pneumonia/parasitologia , Schistosoma mansoni , Células Th2/imunologia , Células Th2/metabolismo
11.
Genome Res ; 25(6): 836-44, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25957148

RESUMO

Glucocorticoids (GCs) are commonly prescribed drugs, but their anti-inflammatory benefits are mitigated by metabolic side effects. Their transcriptional effects, including tissue-specific gene activation and repression, are mediated by the glucocorticoid receptor (GR), which is known to bind as a homodimer to a palindromic DNA sequence. Using ChIP-exo in mouse liver under endogenous corticosterone exposure, we report here that monomeric GR interaction with a half-site motif is more prevalent than homodimer binding. Monomers colocalize with lineage-determining transcription factors in both liver and primary macrophages, and the GR half-site motif drives transcription, suggesting that monomeric binding is fundamental to GR's tissue-specific functions. In response to exogenous GC in vivo, GR dimers assemble on chromatin near ligand-activated genes, concomitant with monomer evacuation of sites near repressed genes. Thus, pharmacological GCs mediate gene expression by favoring GR homodimer occupancy at classic palindromic sites at the expense of monomeric binding. The findings have important implications for improving therapies that target GR.


Assuntos
Genômica/métodos , Glucocorticoides/farmacologia , Receptores de Glucocorticoides/genética , Ativação Transcricional , Animais , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Clonagem Molecular , Expressão Gênica , Terapia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Glucocorticoides/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Genes Dev ; 24(10): 1035-44, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20478996

RESUMO

The transcriptional mechanisms by which temporary exposure to developmental signals instigates adipocyte differentiation are unknown. During early adipogenesis, we find transient enrichment of the glucocorticoid receptor (GR), CCAAT/enhancer-binding protein beta (CEBPbeta), p300, mediator subunit 1, and histone H3 acetylation near genes involved in cell proliferation, development, and differentiation, including the gene encoding the master regulator of adipocyte differentiation, peroxisome proliferator-activated receptor gamma2 (PPARgamma2). Occupancy and enhancer function are triggered by adipogenic signals, and diminish upon their removal. GR, which is important for adipogenesis but need not be active in the mature adipocyte, functions transiently with other enhancer proteins to propagate a new program of gene expression that includes induction of PPARgamma2, thereby providing a memory of the earlier adipogenic signal. Thus, the conversion of preadipocyte to adipocyte involves the formation of an epigenomic transition state that is not observed in cells at the beginning or end of the differentiation process.


Assuntos
Adipogenia/fisiologia , Epigênese Genética , Transdução de Sinais , Acetilação , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Linhagem Celular , Histonas/metabolismo , Camundongos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores de Glucocorticoides/metabolismo
13.
J Biol Chem ; 291(20): 10867-75, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27002153

RESUMO

FGF21 is an atypical member of the FGF family that functions as a hormone to regulate carbohydrate and lipid metabolism. Here we demonstrate that the actions of FGF21 in mouse adipose tissue, but not in liver, are modulated by the nuclear receptor Rev-erbα, a potent transcriptional repressor. Interrogation of genes induced in the absence of Rev-erbα for Rev-erbα-binding sites identified ßKlotho, an essential coreceptor for FGF21, as a direct target gene of Rev-erbα in white adipose tissue but not liver. Rev-erbα ablation led to the robust elevated expression of ßKlotho. Consequently, the effects of FGF21 were markedly enhanced in the white adipose tissue of mice lacking Rev-erbα. A major Rev-erbα-controlled enhancer at the Klb locus was also bound by the adipocytic transcription factor peroxisome proliferator-activated receptor (PPAR) γ, which regulates its activity in the opposite direction. These findings establish Rev-erbα as a specific modulator of FGF21 signaling in adipose tissue.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Transdução de Sinais/fisiologia , Adipócitos/citologia , Tecido Adiposo/citologia , Animais , Feminino , Fatores de Crescimento de Fibroblastos/genética , Proteínas Klotho , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , PPAR gama/genética , PPAR gama/metabolismo
14.
Nature ; 453(7192): 246-50, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18418379

RESUMO

Chromatin influences gene expression by restricting access of DNA binding proteins to their cognate sites in the genome. Large-scale characterization of nucleosome positioning in Saccharomyces cerevisiae has revealed a stereotyped promoter organization in which a nucleosome-free region (NFR) is present within several hundred base pairs upstream of the translation start site. Many transcription factors bind within NFRs and nucleate chromatin remodelling events which then expose other cis-regulatory elements. However, it is not clear how transcription-factor binding and chromatin influence quantitative attributes of gene expression. Here we show that nucleosomes function largely to decouple the threshold of induction from dynamic range. With a series of variants of one promoter, we establish that the affinity of exposed binding sites is a primary determinant of the level of physiological stimulus necessary for substantial gene activation, and sites located within nucleosomal regions serve to scale expression once chromatin is remodelled. Furthermore, we find that the S. cerevisiae phosphate response (PHO) pathway exploits these promoter designs to tailor gene expression to different environmental phosphate levels. Our results suggest that the interplay of chromatin and binding-site affinity provides a mechanism for fine-tuning responses to the same cellular state. Moreover, these findings may be a starting point for more detailed models of eukaryotic transcriptional control.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Proteínas de Ligação a DNA/genética , Genes Fúngicos/genética , Genes Reporter/genética , Modelos Genéticos , Nucleossomos/genética , Nucleossomos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Fosfatos/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Ativação Transcricional
15.
Proc Natl Acad Sci U S A ; 108(39): 16271-6, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21914845

RESUMO

The identification of factors that define adipocyte precursor potential has important implications for obesity. Preadipocytes are fibroblastoid cells committed to becoming round lipid-laden adipocytes. In vitro, this differentiation process is facilitated by confluency, followed by adipogenic stimuli. During adipogenesis, a large number of cytostructural genes are repressed before adipocyte gene induction. Here we report that the transcriptional repressor transcription factor 7-like 1 (TCF7L1) binds and directly regulates the expression of cell structure genes. Depletion of TCF7L1 inhibits differentiation, because TCF7L1 indirectly induces the adipogenic transcription factor peroxisome proliferator-activated receptor γ in a manner that can be replaced by inhibition of myosin II activity. TCF7L1 is induced by cell contact in adipogenic cell lines, and ectopic expression of TCF7L1 alleviates the confluency requirement for adipocytic differentiation of precursor cells. In contrast, TCF7L1 is not induced during confluency of non-adipogenic fibroblasts, and, remarkably, forced expression of TCF7L1 is sufficient to commit non-adipogenic fibroblasts to an adipogenic fate. These results establish TCF7L1 as a transcriptional hub coordinating cell-cell contact with the transcriptional repression required for adipogenic competency.


Assuntos
Tecido Adiposo/citologia , Proteína 1 Semelhante ao Fator 7 de Transcrição/fisiologia , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula , Camundongos , PPAR gama/genética
16.
BMC Genomics ; 14: 337, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23682854

RESUMO

BACKGROUND: Metabolic homeostasis in mammals critically depends on the regulation of fasting-induced genes by CREB in the liver. Previous genome-wide analysis has shown that only a small percentage of CREB target genes are induced in response to fasting-associated signaling pathways. The precise molecular mechanisms by which CREB specifically targets these genes in response to alternating hormonal cues remain to be elucidated. RESULTS: We performed chromatin immunoprecipitation coupled to high-throughput sequencing of CREB in livers from both fasted and re-fed mice. In order to quantitatively compare the extent of CREB-DNA interactions genome-wide between these two physiological conditions we developed a novel, robust analysis method, termed the 'single sample independence' (SSI) test that greatly reduced the number of false-positive peaks. We found that CREB remains constitutively bound to its target genes in the liver regardless of the metabolic state. Integration of the CREB cistrome with expression microarrays of fasted and re-fed mouse livers and ChIP-seq data for additional transcription factors revealed that the gene expression switches between the two metabolic states are associated with co-localization of additional transcription factors at CREB sites. CONCLUSIONS: Our results support a model in which CREB is constitutively bound to thousands of target genes, and combinatorial interactions between DNA-binding factors are necessary to achieve the specific transcriptional response of the liver to fasting. Furthermore, our genome-wide analysis identifies thousands of novel CREB target genes in liver, and suggests a previously unknown role for CREB in regulating ER stress genes in response to nutrient influx.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ingestão de Alimentos , Jejum/metabolismo , Genômica , Fígado/metabolismo , Animais , Sequência de Bases , Imunoprecipitação da Cromatina , DNA/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Transcrição Gênica
17.
Sci Total Environ ; 872: 162167, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36775147

RESUMO

Forests account for nearly 90 % of the world's terrestrial biomass in the form of carbon and they support 80 % of the global biodiversity. To understand the underlying forest dynamics, we need a long-term but also relatively high-frequency, networked monitoring system, as traditionally used in meteorology or hydrology. While there are numerous existing forest monitoring sites, particularly in temperate regions, the resulting data streams are rarely connected and do not provide information promptly, which hampers real-time assessments of forest responses to extreme climate events. The technology to build a better global forest monitoring network now exists. This white paper addresses the key structural components needed to achieve a novel meta-network. We propose to complement - rather than replace or unify - the existing heterogeneous infrastructure with standardized, quality-assured linking methods and interacting data processing centers to create an integrated forest monitoring network. These automated (research topic-dependent) linking methods in atmosphere, biosphere, and pedosphere play a key role in scaling site-specific results and processing them in a timely manner. To ensure broad participation from existing monitoring sites and to establish new sites, these linking methods must be as informative, reliable, affordable, and maintainable as possible, and should be supplemented by near real-time remote sensing data. The proposed novel meta-network will enable the detection of emergent patterns that would not be visible from isolated analyses of individual sites. In addition, the near real-time availability of data will facilitate predictions of current forest conditions (nowcasts), which are urgently needed for research and decision making in the face of rapid climate change. We call for international and interdisciplinary efforts in this direction.

18.
Proc Natl Acad Sci U S A ; 106(4): 1105-10, 2009 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-19139408

RESUMO

Adipocyte differentiation is controlled by many transcription factors, but few known downstream targets of these factors are necessary for adipogenesis. Here we report that retinol saturase (RetSat), which is an enzyme implicated in the generation of dihydroretinoid metabolites, is induced during adipogenesis and is directly regulated by the transcription factor peroxisome proliferator activated receptor gamma (PPARgamma). Ablation of RetSat dramatically inhibited adipogenesis but, surprisingly, this block was not overcome by the putative product of RetSat enzymatic activity. On the other hand, ectopic RetSat with an intact, but not a mutated, FAD/NAD dinucleotide-binding motif increased endogenous PPARgamma transcriptional activity and promoted adipogenesis. Indeed, RetSat was not required for adipogenesis when cells were provided with exogenous PPARgamma ligands. In adipose tissue, RetSat is expressed in adipocytes but is unexpectedly downregulated in obesity, most likely owing to infiltration of macrophages that we demonstrate to repress RetSat expression. Thiazolidinedione treatment reversed low RetSat expression in adipose tissue of obese mice. Thus, RetSat plays an important role in the biology of adipocytes, where it favors normal differentiation, yet is reduced in the obese state. RetSat is thus a novel target for therapeutic intervention in metabolic disease.


Assuntos
Adipogenia , Regulação para Baixo/genética , Obesidade/enzimologia , Obesidade/patologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/enzimologia , Animais , Sequência de Bases , Sítios de Ligação , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Ativação Enzimática , Indução Enzimática , Feminino , Humanos , Íntrons/genética , Camundongos , Dados de Sequência Molecular , Nucleotídeos/metabolismo , Obesidade/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , PPAR gama/metabolismo , Elementos de Resposta/genética , Transcrição Gênica , Vitamina A/análogos & derivados , Vitamina A/metabolismo
19.
PLoS One ; 17(5): e0268426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35551557

RESUMO

Ecological research, just as all Earth System Sciences, is becoming increasingly data-rich. Tools for processing of "big data" are continuously developed to meet corresponding technical and logistical challenges. However, even at smaller scales, data sets may be challenging when best practices in data exploration, quality control and reproducibility are to be met. This can occur when conventional methods, such as generating and assessing diagnostic visualizations or tables, become unfeasible due to time and practicality constraints. Interactive processing can alleviate this issue, and is increasingly utilized to ensure that large data sets are diligently handled. However, recent interactive tools rarely enable data manipulation, may not generate reproducible outputs, or are typically data/domain-specific. We developed datacleanr, an interactive tool that facilitates best practices in data exploration, quality control (e.g., outlier assessment) and flexible processing for multiple tabular data types, including time series and georeferenced data. The package is open-source, and based on the R programming language. A key functionality of datacleanr is the "reproducible recipe"-a translation of all interactive actions into R code, which can be integrated into existing analyses pipelines. This enables researchers experienced with script-based workflows to utilize the strengths of interactive processing without sacrificing their usual work style or functionalities from other (R) packages. We demonstrate the package's utility by addressing two common issues during data analyses, namely 1) identifying problematic structures and artefacts in hierarchically nested data, and 2) preventing excessive loss of data from 'coarse,' code-based filtering of time series. Ultimately, with datacleanr we aim to improve researchers' workflows and increase confidence in and reproducibility of their results.


Assuntos
Linguagens de Programação , Software , Análise de Dados , Reprodutibilidade dos Testes , Fluxo de Trabalho
20.
Mol Cancer Res ; 19(4): 598-611, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33431608

RESUMO

The role of PPAR gamma (PPARγ) has been well characterized in the developmental process of adipogenesis, yet its aberrant expression patterns and functions in cancer subtypes are less understood. Although PPARγ has been recently demonstrated to play non-cell-autonomous roles in promoting bladder urothelial carcinoma (UC) progression, underlying mechanisms of the cell-intrinsic oncogenic activity remain unknown. Here, we report robust expression and nuclear accumulation of PPARγ in 47% of samples of patients with UC, exceeding mRNA expression patterns published by The Cancer Genome Atlas. In vitro assays revealed for the first time that treatment of UC cells with PPARγ inverse agonist or PPARG knockout by CRISPR-Cas9 reduces proliferation, migration, and invasion of multiple established UC cell lines, most strongly in those characterized by PPARG genomic amplification or activating mutations of RXRA, the obligate heterodimer of PPARγ. Through genome-wide approaches including chromatin immunoprecipitation sequencing and RNA sequencing, we define a novel set of PPARγ-regulated genes in UC, including Sonic Hedgehog (SHH). Similar to PPARγ, genetic inhibition of SHH reduces proliferation and motility. Finally, we demonstrate the PPARγ dependency of UC tumors in vivo by genetic and pharmacologic PPARγ inhibition in subcutaneous xenografts. Collectively, our data indicate that PPARγ promotes UC progression in a subset of patients, at least in part, through cell-autonomous mechanisms linked to SHH signaling. IMPLICATIONS: Genome-wide analysis of DNA-binding sites for oncogenic factor PPARγ revealed SHH as a novel downstream target involved in UC progression, providing important insight into the tumorigenic nature and molecular mechanism of PPARγ signaling in UC.


Assuntos
Carcinoma de Células de Transição/metabolismo , PPAR gama/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Animais , Benzamidas/farmacologia , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/patologia , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Mutação , PPAR gama/antagonistas & inibidores , PPAR gama/biossíntese , PPAR gama/genética , Piridinas/farmacologia , Transdução de Sinais , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa