Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(37): E8765-E8774, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150378

RESUMO

Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by expanded CAG repeats in the huntingtin gene (HTT). Although mutant HTT is expressed during embryonic development and throughout life, clinical HD usually manifests later in adulthood. A number of studies document neurodevelopmental changes associated with mutant HTT, but whether these are reversible under therapy remains unclear. Here, we identify very early behavioral, molecular, and cellular changes in preweaning transgenic HD rats and mice. Reduced ultrasonic vocalization, loss of prepulse inhibition, and increased risk taking are accompanied by disturbances of dopaminergic regulation in vivo, reduced neuronal differentiation capacity in subventricular zone stem/progenitor cells, and impaired neuronal and oligodendrocyte differentiation of mouse embryo-derived neural stem cells in vitro. Interventional treatment of this early phenotype with the histone deacetylase inhibitor (HDACi) LBH589 led to significant improvement in behavioral changes and markers of dopaminergic neurotransmission and complete reversal of aberrant neuronal differentiation in vitro and in vivo. Our data support the notion that neurodevelopmental changes contribute to the prodromal phase of HD and that early, presymptomatic intervention using HDACi may represent a promising novel treatment approach for HD.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Doença de Huntington/fisiopatologia , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Neurônios/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Ventrículos Laterais/patologia , Masculino , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Neurônios/fisiologia , Panobinostat , Ratos
2.
J Neurosci ; 33(39): 15603-17, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24068827

RESUMO

Glioblastoma (GBM) remains the most pervasive and lethal of all brain malignancies. One factor that contributes to this poor prognosis is the highly invasive character of the tumor. GBM is characterized by microscopic infiltration of tumor cells throughout the brain, whereas non-neural metastases, as well as select lower grade gliomas, develop as self-contained and clearly delineated lesions. Illustrated by rodent xenograft tumor models as well as pathological human patient specimens, we present evidence that one fundamental switch between these two distinct pathologies--invasion and noninvasion--is mediated through the tumor extracellular matrix. Specifically, noninvasive lesions are associated with a rich matrix containing substantial amounts of glycosylated chondroitin sulfate proteoglycans (CSPGs), whereas glycosylated CSPGs are essentially absent from diffusely infiltrating tumors. CSPGs, acting as central organizers of the tumor microenvironment, dramatically influence resident reactive astrocytes, inducing their exodus from the tumor mass and the resultant encapsulation of noninvasive lesions. Additionally, CSPGs induce activation of tumor-associated microglia. We demonstrate that the astrogliotic capsule can directly inhibit tumor invasion, and its absence from GBM presents an environment favorable to diffuse infiltration. We also identify the leukocyte common antigen-related phosphatase receptor (PTPRF) as a putative intermediary between extracellular glycosylated CSPGs and noninvasive tumor cells. In all, we present CSPGs as critical regulators of brain tumor histopathology and help to clarify the role of the tumor microenvironment in brain tumor invasion.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Glioma/metabolismo , Microambiente Tumoral , Adulto , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Células Cultivadas , Criança , Proteoglicanas de Sulfatos de Condroitina/genética , Feminino , Glioma/patologia , Glicosilação , Humanos , Masculino , Camundongos , Microglia/metabolismo , Microglia/patologia , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Neurooncol ; 117(1): 15-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24510433

RESUMO

Glioblastoma (GBM) is the most common malignant adult brain tumor and carries a poor prognosis due to primary and acquired resistance. While many cellular features of GBM have been documented, it is unclear if cells within these tumors extend a primary cilium, an organelle whose associated signaling pathways may regulate proliferation, migration, and survival of neural precursor and tumor cells. Using immunohistochemical and electron microscopy (EM) techniques, we screened human GBM tumor biopsies and primary cell lines for cilia. Immunocytochemical staining of five primary GBM cell lines revealed that between 8 and 25 % of the cells in each line possessed gamma tubulin-positive basal bodies from which extended acetylated, alpha-tubulin-positive axonemes. EM analyses confirmed the presence of cilia at the cell surface and revealed that their axonemes contained organized networks of microtubules, a structural feature consistent with our detection of IFT88 and Arl13b, two trafficked cilia proteins, along the lengths of the axonemes. Notably, cilia were detected in each of 23 tumor biopsies (22 primary and 1 recurrent) examined. These cilia were distributed across the tumor landscape including regions proximal to the vasculature and within necrotic areas. Moreover, ciliated cells within these tumors co-stained with Ki67, a marker for actively dividing cells, and ZEB1, a transcription factor that is upregulated in GBM and linked to tumor initiation, invasion, and chemoresistance. Collectively, our data show that subpopulations of cells within human GBM tumors are ciliated. In view of mounting evidence supporting roles of primary cilia in tumor initiation and propagation, it is likely that further study of the effects of cilia on GBM tumor cell function will improve our understanding of GBM pathogenesis and may provide new directions for GBM treatment strategies.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/ultraestrutura , Cílios/ultraestrutura , Glioblastoma/metabolismo , Glioblastoma/ultraestrutura , Fatores de Ribosilação do ADP/metabolismo , Idoso de 80 Anos ou mais , Axonema/metabolismo , Axonema/ultraestrutura , Corpos Basais/metabolismo , Corpos Basais/ultraestrutura , Linhagem Celular Tumoral , Cílios/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Fatores de Transcrição/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco
4.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38854085

RESUMO

Transdifferentiation (TD), a somatic cell reprogramming process that eliminates pluripotent intermediates, creates cells that are ideal for personalized anti-cancer therapy. Here, we provide the first evidence that extracellular vesicles (EVs) from TD-derived induced neural stem cells (Exo-iNSCs) are an efficacious treatment strategy for brain cancer. We found that genetically engineered iNSCs generated EVs loaded with the tumoricidal gene product TRAIL at nearly twice the rate as their parental fibroblasts, and the TRAIL produced by iNSCs were naturally loaded into the lumen of EVs and arrayed across their outer membrane (Exo-iNSC-TRAIL). Uptake studies in ex vivo organotypic brain slice cultures showed Exo-iNSC-TRAIL selectively accumulates within tumor foci, and co-culture assays showed that Exo-iNSC-TRAIL killed metastatic and primary brain cancer cells more effectively than free TRAIL. In an orthotopic mouse model of brain cancer, Exo-iNSC-TRAIL reduced breast-to-brain tumor xenografts around 3000-fold greater than treatment with free TRAIL, with all Exo-iNSC-TRAIL treated animals surviving through 90 days post-treatment. In additional in vivo testing against aggressive U87 and invasive GBM8 glioblastoma tumors, Exo-iNSC-TRAIL also induced a statistically significant increase in survival. These studies establish a new easily generated, stable, tumor-targeted EV to efficaciously treat multiple forms of brain cancer.

5.
J Control Release ; 372: 433-445, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38908756

RESUMO

Transdifferentiation (TD), a somatic cell reprogramming process that eliminates pluripotent intermediates, creates cells that are ideal for personalized anti-cancer therapy. Here, we provide the first evidence that extracellular vesicles (EVs) from TD-derived induced neural stem cells (Exo-iNSCs) are an efficacious treatment strategy for brain cancer. We found that genetically engineered iNSCs generated EVs loaded with the tumoricidal gene product TRAIL at nearly twice the rate of their parental fibroblasts, and TRAIL produced by iNSCs was naturally loaded into the lumen of EVs and arrayed across their outer membrane (Exo-iNSC-TRAIL). Uptake studies in ex vivo organotypic brain slice cultures showed that Exo-iNSC-TRAIL selectively accumulates within tumor foci, and co-culture assays demonstrated that Exo-iNSC-TRAIL killed metastatic and primary brain cancer cells more effectively than free TRAIL. In an orthotopic mouse model of brain cancer, Exo-iNSC-TRAIL reduced breast-to-brain tumor xenografts by approximately 3000-fold compared to treatment with free TRAIL, with all Exo-iNSC-TRAIL treated animals surviving through 90 days post-treatment. In additional in vivo testing against aggressive U87 and invasive GBM8 glioblastoma tumors, Exo-iNSC-TRAIL also induced a statistically significant increase in survival. These studies establish a novel, easily generated, stable, tumor-targeted EV to efficaciously treat multiple forms of brain cancer.

6.
Mod Pathol ; 25(2): 157-62, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22056951

RESUMO

The presence of stem and progenitor cells in the adult human brain suggests a putative and persistent role in reparative behaviors following neurological injury and neurological disease. Too few stem/progenitor cells (as in the case of Parkinson's disease) or too many of these cells (as in the case of Huntington's disease and glioma) could contribute to and even signal brain pathology. We address here critical issues faced by the field of stem cell biology and regenerative medicine, arguing from well-documented as well as speculative perspectives for a potential role for stem cells in the pathology of many human neurological diseases. Although stem cell responses may result in regenerative failure, in many cases they may help in the establishment or re-establishment of a functional neural circuitry (eg, after stroke). Therefore, we would argue that stem cells have a crucial-either positive or negative-role in the pathology of many neurological diseases.


Assuntos
Doenças do Sistema Nervoso/patologia , Células-Tronco/patologia , Animais , Humanos
7.
Mol Cell Neurosci ; 47(1): 61-70, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21420496

RESUMO

Cerebellar Purkinje neurons (PNs) possess a well characterized propensity to fuse with bone marrow-derived cells (BMDCs), producing heterokaryons with Purkinje cell identities. This offers the potential to rescue/repair at risk or degenerating PNs in the inherited ataxias, including Spinocerebellar Ataxia 1 (SCA1), by introducing therapeutic factors through BMDCs to potentially halt or reverse disease progression. In this study, we combined gene therapy and a stem cell-based treatment to attempt repair of at-risk PNs through cell-cell fusion in a Sca1(154Q/2Q) knock-in mouse model. BMDCs enriched for the hematopoietic stem cell (HSC) population were genetically modified using adeno-associated viral vector 7 (AAV7) to carry SCA1 modifier genes and transplanted into irradiated Sca1(154Q/2Q) mice. Binucleated Purkinje heterokaryons with sex-mismatched donor Y chromosomes were detected and successfully expressed the modifier genes in vivo. Potential effects of the new genome within Purkinje heterokaryons were evaluated using nuclear inclusions (NIs) as a biological marker to reflect possible modifications of the SCA1 disease process. An overall decrease in number of NIs and an increase in the number of surviving PNs were observed in treated Sca1(154Q/2Q). Furthermore, Bergmann glia were found to have fusogenic potential with the donor population and reveal another potential route of therapeutic entry into at-risk cells of the SCA1 cerebellum. This study presents a first step towards a proof-of-principle that combines somatic cellular fusion events with a neuroprotective gene therapy approach for providing potential neuronal protection/repair in a variety of neurodegenerative disorders.


Assuntos
Fusão Celular , Técnicas de Transferência de Genes , Células de Purkinje/fisiologia , Ataxias Espinocerebelares/terapia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Feminino , Técnicas de Introdução de Genes , Células HEK293 , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Células de Purkinje/citologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
8.
Ann Neurol ; 68(2): 264-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20695020

RESUMO

Residual tumor cells remain beyond the margins of every glioblastoma (GBM) resection. Their resistance to postsurgical therapy is considered a major driving force of mortality, but their biology remains largely uncharacterized. In this study, residual tumor cells were derived via experimental biopsy of the resection margin after standard neurosurgery for direct comparison with samples from the routinely resected tumor tissue. In vitro analysis of proliferation, invasion, stem cell qualities, GBM-typical antigens, genotypes, and in vitro drug and irradiation challenge studies revealed these cells as unique entities. Our findings suggest a need for characterization of residual tumor cells to optimize diagnosis and treatment of GBM.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Adulto , Idoso , Antígenos de Neoplasias/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Técnicas de Cultura de Células , Proliferação de Células , Separação Celular , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Invasividade Neoplásica/fisiopatologia , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células Tumorais Cultivadas
9.
Brain ; 133(11): 3359-72, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20719879

RESUMO

The hippocampal dentate gyrus maintains its capacity to generate new neurons throughout life. In animal models, hippocampal neurogenesis is increased by cognitive tasks, and experimental ablation of neurogenesis disrupts specific modalities of learning and memory. In humans, the impact of neurogenesis on cognition remains unclear. Here, we assessed the neurogenic potential in the human hippocampal dentate gyrus by isolating adult human neural stem cells from 23 surgical en bloc hippocampus resections. After proliferation of the progenitor cell pool in vitro we identified two distinct patterns. Adult human neural stem cells with a high proliferation capacity were obtained in 11 patients. Most of the cells in the high proliferation capacity cultures were capable of neuronal differentiation (53 ± 13% of in vitro cell population). A low proliferation capacity was observed in 12 specimens, and only few cells differentiated into neurons (4 ± 2%). This was reflected by reduced numbers of proliferating cells in vivo as well as granule cells immunoreactive for doublecortin, brain-derived neurotrophic factor and cyclin-dependent kinase 5 in the low proliferation capacity group. High and low proliferation capacity groups differed dramatically in declarative memory tasks. Patients with high proliferation capacity stem cells had a normal memory performance prior to epilepsy surgery, while patients with low proliferation capacity stem cells showed severe learning and memory impairment. Histopathological examination revealed a highly significant correlation between granule cell loss in the dentate gyrus and the same patient's regenerative capacity in vitro (r = 0.813; P < 0.001; linear regression: R²(adjusted) = 0.635), as well as the same patient's ability to store and recall new memories (r = 0.966; P = 0.001; linear regression: R²(adjusted) = 0.9). Our results suggest that encoding new memories is related to the regenerative capacity of the hippocampus in the human brain.


Assuntos
Células-Tronco Adultas/citologia , Proliferação de Células , Hipocampo/citologia , Transtornos da Memória/patologia , Adulto , Células-Tronco Adultas/fisiologia , Fatores Etários , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Hipocampo/fisiologia , Humanos , Masculino , Transtornos da Memória/psicologia , Pessoa de Meia-Idade , Distribuição Aleatória , Adulto Jovem
10.
J Urol ; 183(5): 2045-53, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20303530

RESUMO

PURPOSE: We identified a discrete population of stem cell-like tumor cells expressing 5 essential transcription factors required to reprogram pluripotency in prostate tumor cell lines and primary prostate cancer tissue. MATERIALS AND METHODS: DU145 and PC3 human prostate cancer cell lines (ATCC), tumor tissue from patients with prostate cancer and normal prostate tissue were evaluated for the reprogramming factors OCT3/4 (Cell Signaling Technology), SOX2, Klf4 (Santa Cruz Biotechnology, Santa Cruz, California), Nanog (BioLegend) and c-Myc (Cell Signaling) by semiquantitative reverse transcriptase-polymerase chain reaction, histological and immunohistochemical analysis. Stem cell-like tumor cells were enriched by flow cytometric cell sorting using E-cadherin (R&D Systems) as a surface marker, and soft agar, spheroid and tumorigenicity assays to confirm cancer stem cell-like characteristics. RESULTS: mRNA expression of transcription factors OCT3/4 and SOX2 highly correlated in primary prostate tumor tissue samples. The number of OCT3/4 or SOX2 expressing cells was significantly increased in prostate cancer tissue compared to that in normal prostate or benign prostate hyperplasia tissue (p <0.05). When isolated from the DU145 and PC3 prostate cancer cell lines by flow cytometry, stem cell-like tumor cells expressing high OCT3/4 and SOX2 levels showed high tumorigenicity in immunodeficient mice. In vivo growth of the parental DU145 and PC3 prostate cancer cell lines was inhibited by short hairpin RNA knockdown of OCT3/4 or SOX2. CONCLUSIONS: Data suggest that prostate tumor cells expressing pluripotent stem cell transcription factors are highly tumorigenic. Identifying such cells and their importance in prostate cancer growth could provide opportunities for novel targeting strategies for prostate cancer therapy.


Assuntos
Células-Tronco Pluripotentes/metabolismo , Neoplasias da Próstata/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Análise de Variância , Animais , Western Blotting , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Imuno-Histoquímica , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Neoplasias da Próstata/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética , Células Tumorais Cultivadas
11.
Stem Cells ; 27(7): 1625-34, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19544457

RESUMO

Numerous studies have explored the potential of different stem and progenitor cells to replace at-risk neuronal populations in a variety of neurodegenerative disease models. This study presents data from a side-by-side approach of engrafting two different stem/progenitor cell populations within the postnatal cerebellum of the weaver neurological mutant mouse--cerebellar-derived multipotent astrocytic stem cells and embryonic stem cell-derived neural precursors--for comparative analysis. We show here that both donor populations survive, migrate, and appear to initiate differentiation into neurons within the granuloprival host environment. Neither of these disparate stem/progenitor cell populations adopted significant region-specific identities, despite earlier studies that suggested the potential of these cells to respond to in vivo cues when placed in a permissive/instructive milieu. However, data presented here suggest that molecular and cellular deficits present within weaver homozygous or heterozygous brains may promote a slightly more positive donor cell response toward acquisition of a neuronal phenotype. Hence, it is likely that a fine balance exists between a compromised host environment that is amenable to cell replacement and that of a degenerating cellular milieu where it is perhaps too deleterious to support extensive neuronal differentiation and functional cellular integration. These findings join a growing list of studies that show successful cell replacement depends largely on the interplay between the potentiality of the donor cells and the specific pathological conditions of the recipient environment, and that emergent therapies for neurological disorders involving the use of neural stem cells still require refinement.


Assuntos
Cerebelo/citologia , Células-Tronco Embrionárias/citologia , Neurônios/citologia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Células Cultivadas , Cerebelo/metabolismo , Células-Tronco Embrionárias/metabolismo , Camundongos , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Neurônios/metabolismo , Células-Tronco/metabolismo
12.
Stem Cells ; 27(2): 280-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18988710

RESUMO

An increasing body of evidence suggests that astrocytic gliomas of the central nervous system may be derived from gliotypic neural stem cells. To date, the study of these tumors, particularly the identification of originating cellular population(s), has been frustrated by technical difficulties in accessing the native niche of stem cells. To identify any hallmark signs of cancer in neural stem cells or their progeny, we cultured subventricular zone-derived tissue in a unique in vitro model that temporally and phenotypically recapitulates adult neurogenesis. Contrary to some reports, we found undifferentiated neural stem cells possess few characteristics, suggesting prototumorigenic potential. However, when induced to differentiate, neural stem cells give rise to intermediate progenitors that transiently exhibit multiple glioma characteristics, including aneuploidy, loss of growth-contact inhibition, alterations in cell cycle, and growth factor insensitivity. Further examination of progenitor populations revealed a subset of cells defined by the aberrant expression of (the pathological glioma marker) class III beta-tubulin that exhibit intrinsic parental properties of gliomas, including multilineage differentiation and continued proliferation in the absence of a complex cellular regulatory environment. As tumorigenic characteristics in progenitor cells normally disappear with the generation of mature progeny, this suggests that developmentally intermediate progenitor cells, rather than neural stem cells, may be the origin of so-called "stem cell-derived" tumors.


Assuntos
Diferenciação Celular/fisiologia , Glioma/patologia , Neurônios/citologia , Células-Tronco/patologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Biomarcadores Tumorais/metabolismo , Western Blotting , Células Cultivadas , Citometria de Fluxo , Glioma/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase , Células-Tronco/metabolismo , Células-Tronco/ultraestrutura , Tubulina (Proteína)/metabolismo
13.
J Comp Neurol ; 528(7): 1203-1215, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31743443

RESUMO

Extracellular vesicles, including exosomes/microvesicles (EMVs), have been described as sensitive biomarkers that represent disease states and response to therapies. In light of recent reports of disease-mirroring EMV molecular signatures, the present study profiled two EMVs from different Parkinson's disease (PD) tissue sources: (a) neural progenitor cells derived from an endogenous adult stem/progenitor cell, called adult human neural progenitor (AHNP) cells, that we found to be pathological when isolated from postmortem PD patients' substantia nigra; and (b) leucine-rich repeat kinase 2 (LRRK2) gene identified patient induced pluripotent stem cells (iPSCs), which were used to isolate EMVs and begin to characterize their cargoes. Initial characterization of EMVs derived from idiopathic patients (AHNPs) and mutant LRRK2 patients showed differences between both phenotypes and when compared with a sibling control in EMV size and release based on Nanosight analysis. Furthermore, molecular profiling disclosed that neurodegenerative-related gene pathways altered in PD can be reversed using gene-editing approaches. In fact, the EMV cargo genes exhibited normal expression patterns after gene editing. This study shows that EMVs have the potential to serve as sensitive biomarkers of disease state in both idiopathic and gene-identified PD patients and that following gene-editing, EMVs reflect a corrected state. This is relevant for both prodromal and symptomatic patient populations where potential responses to therapies can be monitored via non-invasive liquid biopsies and EMV characterizations.


Assuntos
Biomarcadores , Exossomos/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson , Exossomos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas , Mutação , Células-Tronco Neurais , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Transcriptoma
14.
Stem Cells ; 26(12): 3218-27, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18802036

RESUMO

Bromodeoxyuridine (BrdU) is a halogenated pyrimidine that incorporates into newly synthesized DNA during the S phase. BrdU is used ubiquitously in cell birthdating studies and as a means of measuring the proliferative index of various cell populations. In the absence of secondary stressors, BrdU is thought to incorporate relatively benignly into replicating DNA chains. However, we report here that a single, low-dose pulse of BrdU exerts a profound and sustained antiproliferative effect in cultured murine stem and progenitor cells. This is accompanied by altered terminal differentiation, cell morphology, and protein expression consistent with the induction of senescence. There is no evidence of a significant increase in spontaneous cell death; however, cells are rendered resistant to chemically induced apoptosis. Finally, we show that a brief in vivo BrdU regimen reduces the proliferative potential of subsequently isolated subependymal zone neurosphere-forming cells. We conclude, therefore, that BrdU treatment induces a senescence pathway that causes a progressive decline in the replication of rapidly dividing stem/progenitor cells, suggesting a novel and uncharacterized effect of BrdU. This finding is significant in that BrdU-incorporating neural stem/progenitor cells and their progeny should not be expected to behave normally with respect to proliferative potential and downstream functional parameters. This effect highlights the need for caution when results based on long-term BrdU tracking over multiple rounds of replication are interpreted. Conversely, the reliable induction of senescence in stem/progenitor cells in vitro and in vivo may yield a novel platform for molecular studies designed to address multiple aspects of aging and neurogenesis.


Assuntos
Bromodesoxiuridina/farmacologia , Neurônios/citologia , Células-Tronco/citologia , Animais , Apoptose , Astrócitos/metabolismo , Proliferação de Células , Células Cultivadas , Senescência Celular , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fatores de Tempo , beta-Galactosidase/metabolismo
15.
Int J Dev Neurosci ; 78: 49-64, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31421150

RESUMO

Adult human neural progenitor and stem cells have been implicated as a potential source of brain cancer causing cells, but specific events that might cause cells to progress towards a transformed phenotype remain unclear. The L1CAM (L1) cell adhesion/recognition molecule is expressed abnormally by human glioma cancer cells and is released as a large extracellular ectodomain fragment, which stimulates cell motility and proliferation. This study investigates the effects of ectopic overexpression of the L1 long ectodomain (L1LE; ˜180 kDa) on the motility, proliferation, and differentiation of human neural progenitor cells (HNPs). L1LE was ectopically expressed in HNPs using a lentiviral vector. Surprisingly, overexpression of L1LE resulted in reduced HNP motility in vitro, in stark contrast to the effects on glioma and other cancer cell types. L1LE overexpression resulted in a variable degree of maintenance of HNP proliferation in media without added growth factors but did not increase proliferation. In monolayer culture, HNPs expressed a variety of differentiation markers. L1LE overexpression resulted in loss of glutamine synthetase (GS) and ß3-tubulin expression in normal HNP media, and reduced vimentin and increased GS expression in the absence of added growth factors. When co-cultured with chick embryonic brain cell aggregates, HNPs show increased differentiation potential. Some HNPs expressed p-neurofilaments and oligodendrocytic O4, indicating differentiation beyond that in monolayer culture. Most HNP-L1LE cells lost their vimentin and GFAP (glial fibrillary acidic protein) staining, and many cells were positive for astrocytic GS. However, these cells rarely were positive for neuronal markers ß3-tubulin or p-neurofilaments, and few HNP oligodendrocyte progenitors were found. These results suggest that unlike for glioma cells, L1LE does not increase HNP cell motility, but rather decreases motility and influences the differentiation of normal brain progenitor cells. Therefore, the effect of L1LE on increasing motility and proliferation appears to be limited to already transformed cells.


Assuntos
Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Células-Tronco Neurais/metabolismo , Linhagem Celular , Pré-Escolar , Expressão Ectópica do Gene , Humanos , Masculino , Molécula L1 de Adesão de Célula Nervosa/genética , Células-Tronco Neurais/citologia
16.
Nat Commun ; 10(1): 4529, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586101

RESUMO

Dynamic alterations in the unique brain extracellular matrix (ECM) are involved in malignant brain tumors. Yet studies of brain ECM roles in tumor cell behavior have been difficult due to lack of access to the human brain. We present a tunable 3D bioengineered brain tissue platform by integrating microenvironmental cues of native brain-derived ECMs and live imaging to systematically evaluate patient-derived brain tumor responses. Using pediatric ependymoma and adult glioblastoma as examples, the 3D brain ECM-containing microenvironment with a balance of cell-cell and cell-matrix interactions supports distinctive phenotypes associated with tumor type-specific and ECM-dependent patterns in the tumor cells' transcriptomic and release profiles. Label-free metabolic imaging of the composite model structure identifies metabolically distinct sub-populations within a tumor type and captures extracellular lipid-containing droplets with potential implications in drug response. The versatile bioengineered 3D tumor tissue system sets the stage for mechanistic studies deciphering microenvironmental role in brain tumor progression.


Assuntos
Neoplasias Encefálicas/patologia , Ependimoma/patologia , Matriz Extracelular/patologia , Glioblastoma/patologia , Engenharia Tecidual/métodos , Encéfalo/citologia , Encéfalo/patologia , Encéfalo/cirurgia , Neoplasias Encefálicas/cirurgia , Comunicação Celular , Pré-Escolar , Técnicas de Cocultura , Ependimoma/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Neurais , Neurônios , Cultura Primária de Células/métodos , Esferoides Celulares , Células Tumorais Cultivadas , Microambiente Tumoral
18.
Glia ; 56(16): 1799-808, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18661554

RESUMO

Microglia, the resident immune cells of the brain, have recently been hypothesized to play a role both in neuronal diseases and age-related neurogenic decline, and are theorized to be modulators of adult neurogenesis. Current methods for the isolation of microglia from cultured primary brain tissue result in relatively poor yield, requiring a large tissue sample or multiple specimens to obtain a sufficient number of microglia for cell and molecular analysis. We report here a method for the repetitive isolation of microglia from established glial monolayer cultures from which it is possible to expand the initial population of microglia roughly 10,000-fold. The expanded population expresses appropriate microglial morphology and phenotype markers, and demonstrates functionally normal phagocytosis, thus providing a high-yield assay for the investigation and analysis of microglia from a single initial dissection of primary tissue. Furthermore, this massive expansion is limited to microglia derived from the subventricular zone as the fold expansion of isolatable microglia was found to be up to 20 times greater than cultures from other brain regions, indicating unique properties for this persistently neurogenic region.


Assuntos
Ventrículos Laterais/citologia , Microglia/citologia , Prosencéfalo/citologia , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Técnicas de Cultura de Células/métodos , Proliferação de Células , Separação Celular/métodos , Células Cultivadas , Dissecação/métodos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Fagocitose/fisiologia , Fenótipo , Prosencéfalo/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia
19.
Methods Mol Biol ; 438: 135-50, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18369755

RESUMO

The relatively recent discovery of persistent adult neurogenesis has led to the experimental isolation and characterization of central nervous system neural stem cell populations. Protocols for in vitro analysis and expansion of neural stem cells are crucial for understanding their properties and defining characteristics. The methods described here allow for cell and molecular analysis of individual clones of cells--neurospheres--derived from neural stem/progenitor cells. Neurospheres can be cultivated from a variety of normal, genetically altered, or pathological tissue specimens, even with protracted postmortem intervals, for studies of mechanisms underlying neurogenesis, cell fate decisions, and cell differentiation. Neurosphere-forming cells hold great promise for the development of cell and molecular therapeutics for a variety of neurological diseases.


Assuntos
Separação Celular/métodos , Sistema Nervoso Central/citologia , Células-Tronco/citologia , Animais , Animais Recém-Nascidos , Adesão Celular , Sistema Nervoso Central/ultraestrutura , Células Clonais , Regulação da Expressão Gênica , Humanos , Camundongos , Transplante de Células-Tronco , Células-Tronco/metabolismo , Células-Tronco/ultraestrutura
20.
Neurosurg Clin N Am ; 18(1): 21-30, viii, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17244551

RESUMO

The adult mammalian brain harbors a population of neural stem cells (NSCs) that are responsible for persistent neurogenesis in the olfactory system and hippocampus and may also play a role in tumorigenesis. Here, the authors review the evidence that NSCs within the adult brain are a special type of astrocyte. In addition, the authors examine the phylogenetic and ontogenetic relations between this astrocyte stem cell and related members of the astrocyte family. Finally, the authors compare and contrast the functional characteristics of NSCs and hematopoietic stem cells and review the potential oncogenic transformation of astrocyte NSCs that may underlie brain tumorigenesis as seen in glioblastoma and other primary brain tumors.


Assuntos
Células-Tronco Adultas/citologia , Astrócitos/citologia , Giro Denteado/citologia , Epêndima/citologia , Adulto , Transformação Celular Neoplásica , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa