Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(28): 10335-40, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24982149

RESUMO

Most central neurons in the mammalian brain possess an appendage called a primary cilium that projects from the soma into the extracellular space. The importance of these organelles is highlighted by the fact that primary cilia dysfunction is associated with numerous neuropathologies, including hyperphagia-induced obesity, hypogonadism, and learning and memory deficits. Neuronal cilia are enriched for signaling molecules, including certain G protein-coupled receptors (GPCRs), suggesting that neuronal cilia sense and respond to neuromodulators in the extracellular space. However, the impact of cilia on signaling to central neurons has never been demonstrated. Here, we show that the kisspeptin receptor (Kiss1r), a GPCR that is activated by kisspeptin to regulate the onset of puberty and adult reproductive function, is enriched in cilia projecting from mouse gonadotropin-releasing hormone (GnRH) neurons. Interestingly, GnRH neurons in adult animals are multiciliated and the percentage of GnRH neurons possessing multiple Kiss1r-positive cilia increases during postnatal development in a progression that correlates with sexual maturation. Remarkably, disruption of cilia selectively on GnRH neurons leads to a significant reduction in kisspeptin-mediated GnRH neuronal activity. To our knowledge, this result is the first demonstration of cilia disruption affecting central neuronal activity and highlights the importance of cilia for proper GPCR signaling.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Reprodução/fisiologia , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Cílios/genética , Cílios/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/genética , Kisspeptinas/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Receptores Acoplados a Proteínas G/genética , Receptores de Kisspeptina-1 , Maturidade Sexual/fisiologia
2.
J Neurosci ; 35(14): 5549-56, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25855171

RESUMO

Hypothalamic neuronal populations are central regulators of energy homeostasis and reproductive function. However, the ontogeny of these critical hypothalamic neuronal populations is largely unknown. We developed a novel approach to examine the developmental pathways that link specific subtypes of neurons by combining embryonic and adult ribosome-tagging strategies in mice. This new method shows that Pomc-expressing precursors not only differentiate into discrete neuronal populations that mediate energy balance (POMC and AgRP neurons), but also into neurons critical for puberty onset and the regulation of reproductive function (Kiss1 neurons). These results demonstrate a developmental link between nutrient-sensing and reproductive neuropeptide synthesizing neuronal populations and suggest a potential pathway that could link maternal nutrition to reproductive development in the offspring.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Hipotálamo/citologia , Kisspeptinas/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Células-Tronco/fisiologia , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Dependovirus/genética , Embrião de Mamíferos , Vetores Genéticos/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação , Kisspeptinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise em Microsséries , Pró-Opiomelanocortina/genética , RNA Mensageiro/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
3.
J Neurosci ; 32(7): 2388-97, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22396413

RESUMO

Human genetic studies have revealed that neurokinin B (NKB) and its receptor, neurokinin-3 receptor (NK3R), are essential elements for normal reproduction; however, the precise role of NKB-NK3R signaling in the initiation of puberty remains unknown. We investigated here the regulation of Tac2 and Tacr3 mRNAs (encoding NKB and NK3R, respectively) in female rats and demonstrated that their hypothalamic expression is increased along postnatal maturation. At puberty, both genes were widely expressed throughout the brain, including the lateral hypothalamic area and the arcuate nucleus (ARC)/medial basal hypothalamus, where the expression of Tacr3 increased across pubertal transition. We showed that central administration of senktide (NK3R agonist) induced luteinizing hormone (LH) secretion in prepubertal and peripubertal females. Conversely, chronic infusion of an NK3R antagonist during puberty moderately delayed the timing of vaginal opening (VO) and tended to decrease LH levels. The expression of NKB and its receptor was sensitive to changes in metabolic status during puberty, as reflected by a reduction in Tacr3 (and, to a lesser extent, Tac2) expression in the ARC after a 48 h fast. Yet, acute LH responses to senktide in pubertal females were preserved, if not augmented, under fasting conditions, suggesting sensitization of the NKB-NK3R-gonadotropin-releasing hormone signaling pathway under metabolic distress. Moreover, repeated administration of senktide to female rats with pubertal arrest due to chronic undernutrition rescued VO (in ∼50% of animals) and potently elicited LH release. Altogether, our observations suggest that NKB-NK3R signaling plays a role in pubertal maturation and that its alterations may contribute to pubertal disorders linked to metabolic stress and negative energy balance.


Assuntos
Metaboloma/fisiologia , Neurocinina B/fisiologia , Maturidade Sexual/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético/fisiologia , Feminino , Neurocinina B/metabolismo , Ratos , Ratos Wistar , Receptores da Neurocinina-3/metabolismo , Receptores da Neurocinina-3/fisiologia
4.
Am J Physiol Endocrinol Metab ; 305(11): E1384-97, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24105416

RESUMO

Kisspeptin (Kiss1) neurons in the rostral periventricular area of the third ventricle (RP3V) provide excitatory drive to gonadotropin-releasing hormone (GnRH) neurons to control fertility. Using whole cell patch clamp recording and single-cell (sc)RT-PCR techniques targeting Kiss1-CreGFP or tyrosine hydroxylase (TH)-EGFP neurons, we characterized the biophysical properties of these neurons and identified the critical intrinsic properties required for burst firing in 17ß-estradiol (E2)-treated, ovariectomized female mice. One-fourth of the RP3V Kiss1 neurons exhibited spontaneous burst firing. RP3V Kiss1 neurons expressed a hyperpolarization-activated h-current (Ih) and a T-type calcium current (IT), which supported hyperpolarization-induced rebound burst firing. Under voltage clamp conditions, all Kiss1 neurons expressed a kinetically fast Ih that was augmented 3.4-fold by high (LH surge-producing)-E2 treatment. scPCR analysis of Kiss1 neurons revealed abundant expression of the HCN1 channel transcripts. Kiss1 neurons also expressed a Ni(2+)- and TTA-P2-sensitive IT that was augmented sixfold with high-E2 treatment. CaV3.1 mRNA was also highly expressed in these cells. Current clamp analysis revealed that rebound burst firing was induced in RP3V Kiss1 neurons in high-E2-treated animals, and the majority of Kiss1 neurons had a hyperpolarization threshold of -84.7 mV, which corresponded to the V½ for IT de-inactivation. Finally, Kiss1 neurons in the RP3V were hyperpolarized by µ- and κ-opioid and GABAB receptor agonists, suggesting that these pathways also contribute to rebound burst firing. Therefore, Kiss1 neurons in the RP3V express the critical channels and receptors that permit E2-dependent rebound burst firing and provide the biophysical substrate that drives the preovulatory surge of GnRH.


Assuntos
Estradiol/farmacologia , Kisspeptinas/metabolismo , Neurônios/fisiologia , Área Pré-Óptica/metabolismo , Animais , Feminino , Fase Folicular/efeitos dos fármacos , Fase Folicular/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Kisspeptinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Ovariectomia , Área Pré-Óptica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Terceiro Ventrículo/efeitos dos fármacos , Terceiro Ventrículo/metabolismo
5.
Adv Exp Med Biol ; 784: 3-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23549999

RESUMO

Research in the nineteenth and early twentieth century established that the brain awakens reproduction, governs reproductive activity in the adult of virtually all vertebrates. By 1950, nearly 100 years later, scientists realized that the hypothalamus and its neurosecretory products play a key role in regulating gonadal function in both males and females. Another 20 years would be required to reveal the chemical identity of GnRH and establish that neurons producing GnRH represent the final common pathway through which the brain regulates gonadotropin secretion. It had also become clear that GnRH neurons behave more like motor neurons-better perhaps at going than stopping-and are themselves regulated by a complex network of afferent inputs, which guide the tempo of sexual maturation, regulate estrous and menstrual cycles, control seasonal breeding, and stop reproduction under adversity. In 2003, the revelation that kisspeptin and its receptor are critical for reproduction opened a floodgate of research documenting the role of kisspeptin neurons as central processors of reproduction. Today, there is wide consensus that kisspeptin signaling in the brain is essential, providing the impetus to GnRH neurons to awaken at puberty and reigning the activity of these neurons when discretion is advised. We celebrate this watershed moment-with full knowledge that time and discovery will provide context and perspective to even these heady days.


Assuntos
Encéfalo/fisiologia , Kisspeptinas/metabolismo , Ciclo Menstrual/fisiologia , Reprodução/fisiologia , Transdução de Sinais/fisiologia , Adulto , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Kisspeptinas/história , Masculino , Neurônios/metabolismo
6.
J Neuroendocrinol ; 34(5): e13141, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35726373

RESUMO

This article highlights key milestones in GnRH research that have occurred in the 50 plus years since the discovery of the decapeptide. It is by no means exhaustive and inevitably reflects our limitations and idiosyncratic perspectives.


Assuntos
Hormônio Liberador de Gonadotropina , Kisspeptinas , Neurônios
7.
J Clin Endocrinol Metab ; 107(1): e328-e347, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34387319

RESUMO

CONTEXT: Recent evidence suggests that vasomotor symptoms (VMS) or hot flashes in the postmenopausal reproductive state and polycystic ovary syndrome (PCOS) in the premenopausal reproductive state emanate from the hyperactivity of Kiss1 neurons in the hypothalamic infundibular/arcuate nucleus (KNDy neurons). OBJECTIVE: We demonstrate in 2 murine models simulating menopause and PCOS that a peripherally restricted kappa receptor agonist (PRKA) inhibits hyperactive KNDy neurons (accessible from outside the blood-brain barrier) and impedes their downstream effects. DESIGN: Case/control. SETTING: Academic medical center. PARTICIPANTS: Mice. INTERVENTIONS: Administration of peripherally restricted kappa receptor agonists and frequent blood sampling to determine hormone release and body temperature. MAIN OUTCOME MEASURES: LH pulse parameters and body temperature. RESULTS: First, chronic administration of a PRKA to bilaterally ovariectomized mice with experimentally induced hyperactivity of KNDy neurons reduces the animals' elevated body temperature, mean plasma LH level, and mean peak LH per pulse. Second, chronic administration of a PRKA to a murine model of PCOS, having elevated plasma testosterone levels and irregular ovarian cycles, suppresses circulating levels of LH and testosterone and restores normal ovarian cyclicity. CONCLUSION: The inhibition of kisspeptin neuronal activity by activation of kappa receptors shows promise as a novel therapeutic approach to treat both VMS and PCOS in humans.


Assuntos
Fogachos/tratamento farmacológico , Kisspeptinas/antagonistas & inibidores , Menopausa/metabolismo , Síndrome do Ovário Policístico/tratamento farmacológico , Receptores Opioides kappa/agonistas , Animais , Buprenorfina/administração & dosagem , Modelos Animais de Doenças , Feminino , Fogachos/sangue , Fogachos/etiologia , Humanos , Kisspeptinas/metabolismo , Meloxicam/administração & dosagem , Menopausa/sangue , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Síndrome do Ovário Policístico/metabolismo , Receptores Opioides kappa/metabolismo , Sistema Vasomotor/efeitos dos fármacos
8.
J Neurosci ; 30(8): 3124-32, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20181609

RESUMO

Gonadotropin-releasing hormone (GnRH) neurons in the basal forebrain are the final common pathway through which the brain regulates reproduction. GnRH secretion occurs in a pulsatile manner, and indirect evidence suggests the kisspeptin neurons in the arcuate nucleus (ARC) serve as the central pacemaker that drives pulsatile GnRH secretion. The purpose of this study was to investigate the possible coexpression of kisspeptin, neurokinin B (NKB), and dynorphin A (Dyn) in neurons of the ARC of the goat and evaluate their potential roles in generating GnRH pulses. Using double and triple labeling, we confirmed that all three neuropeptides are coexpressed in the same population of neurons. Using electrophysiological techniques to record multiple-unit activity (MUA) in the medial basal hypothalamus, we found that bursts of MUA occurred at regular intervals in ovariectomized animals and that these repetitive bursts (volleys) were invariably associated with discrete pulses of luteinizing hormone (LH) (and by inference GnRH). Moreover, the frequency of MUA volleys was reduced by gonadal steroids, suggesting that the volleys reflect the rhythmic discharge of steroid-sensitive neurons that regulate GnRH secretion. Finally, we observed that central administration of Dyn-inhibit MUA volleys and pulsatile LH secretion, whereas NKB induced MUA volleys. These observations are consistent with the hypothesis that kisspeptin neurons in the ARC drive pulsatile GnRH and LH secretion, and suggest that NKB and Dyn expressed in those neurons are involved in the process of generating the rhythmic discharge of kisspeptin.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Potenciais de Ação/fisiologia , Animais , Relógios Biológicos/fisiologia , Eletrofisiologia , Ciclo Estral/fisiologia , Feminino , Cabras , Hormônios Esteroides Gonadais/metabolismo , Kisspeptinas , Hormônio Luteinizante/metabolismo , Sistemas Neurossecretores/fisiologia , Ovariectomia , Periodicidade , Proteínas/metabolismo , Reprodução/fisiologia
9.
Am J Physiol Endocrinol Metab ; 300(1): E202-10, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21045176

RESUMO

Neurokinin B (NKB) and its cognate receptor neurokinin 3 (NK3R) play a critical role in reproduction. NKB and NK3R are coexpressed with dynorphin (Dyn) and kisspeptin (Kiss1) genes in neurons of the arcuate nucleus (Arc). However, the mechanisms of action of NKB as a cotransmitter with kisspeptin and dynorphin remain poorly understood. We explored the role of NKB in the control of LH secretion in the female rat as follows. 1) We examined the effect of an NKB agonist (senktide, 600 pmol, administered into the lateral cerebral ventricle) on luteinizing hormone (LH) secretion. In the presence of physiological levels of estradiol (E(2)), senktide induced a profound increase in serum levels of LH and a 10-fold increase in the number of Kiss1 neurons expressing c-fos in the Arc (P < 0.01 for both). 2) We mapped the distribution of NKB and NK3R mRNAs in the central forebrain and found that both are widely expressed, with intense expression in several hypothalamic nuclei that control reproduction, including the Arc. 3) We studied the effect of E(2) on the expression of NKB and NK3R mRNAs in the Arc and found that E(2) inhibits the expression of both genes (P < 0.01) and that the expression of NKB and NK3R reaches its nadir on the afternoon of proestrus (when circulating levels of E(2) are high). These observations suggest that NKB/NK3R signaling in Kiss1/NKB/Dyn-producing neurons in the Arc has a pivotal role in the control of gonadotropin-releasing hormone (GnRH)/LH secretion and its regulation by E(2)-dependent negative feedback in the rat.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Proteínas/metabolismo , Receptores da Neurocinina-3/metabolismo , Transdução de Sinais , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Estradiol/metabolismo , Ciclo Estral/metabolismo , Retroalimentação Fisiológica , Feminino , Regulação da Expressão Gênica , Kisspeptinas , Hormônio Luteinizante/sangue , Neurocinina B/agonistas , Neurocinina B/genética , Neurônios/efeitos dos fármacos , Especificidade de Órgãos , Fragmentos de Peptídeos/farmacologia , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Proteínas/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores da Neurocinina-3/agonistas , Receptores da Neurocinina-3/genética , Transdução de Sinais/efeitos dos fármacos , Substância P/análogos & derivados , Substância P/farmacologia
10.
J Neurosci ; 29(38): 11859-66, 2009 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-19776272

RESUMO

Kisspeptin is encoded by the Kiss1 gene, and kisspeptin signaling plays a critical role in reproduction. In rodents, kisspeptin neurons in the arcuate nucleus (Arc) provide tonic drive to gonadotropin-releasing hormone (GnRH) neurons, which in turn supports basal luteinizing hormone (LH) secretion. Our objectives were to determine whether preprodynorphin (Dyn) and neurokinin B (NKB) are coexpressed in Kiss1 neurons in the mouse and to evaluate its physiological significance. Using in situ hybridization, we found that Kiss1 neurons in the Arc of female mice not only express the Dyn and NKB genes but also the NKB receptor gene (NK3) and the Dyn receptor [the kappa opioid receptor (KOR)] gene. We also found that expression of the Dyn, NKB, KOR, and NK3 in the Arc are inhibited by estradiol, as has been established for Kiss1, and confirmed that Dyn and NKB inhibit LH secretion. Moreover, using Dyn and KOR knock-out mice, we found that long-term disruption of Dyn/KOR signaling compromises the rise of LH after ovariectomy. We propose a model whereby NKB and dynorphin act autosynaptically on kisspeptin neurons in the Arc to synchronize and shape the pulsatile secretion of kisspeptin and drive the release of GnRH from fibers in the median eminence.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Precursores de Proteínas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Dinorfinas/genética , Estradiol/metabolismo , Feminino , Hibridização In Situ , Kisspeptinas , Hormônio Luteinizante/sangue , Hormônio Luteinizante/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Neurológicos , Ovariectomia , Precursores de Proteínas/genética , RNA Mensageiro/metabolismo , Receptores da Neurocinina-3/agonistas , Receptores da Neurocinina-3/metabolismo , Receptores Opioides/agonistas , Receptores Opioides/genética , Receptores Opioides/metabolismo , Transdução de Sinais
11.
J Neurosci ; 29(29): 9390-5, 2009 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-19625529

RESUMO

Kisspeptin is a product of the Kiss1 gene and is expressed in the forebrain. Neurons that express Kiss1 play a crucial role in the regulation of pituitary luteinizing hormone secretion and reproduction. These neurons are the direct targets for the action of estradiol-17beta (E(2)), which acts via the estrogen receptor alpha isoform (ER alpha) to regulate Kiss1 expression. In the arcuate nucleus (Arc), where the dynorphin gene (Dyn) is expressed in Kiss1 neurons, E(2) inhibits the expression of Kiss1 mRNA. However, E(2) induces the expression of Kiss1 in the anteroventral periventricular nucleus (AVPV). The mechanism for differential regulation of Kiss1 in the Arc and AVPV by E(2) is unknown. ER alpha signals through multiple pathways, which can be categorized as either classical, involving the estrogen response element (ERE), or nonclassical, involving ERE-independent mechanisms. To elucidate the molecular basis for the action of E(2) on Kiss1 and Dyn expression, we studied the effects of E(2) on Kiss1 and Dyn mRNAs in the brains of mice bearing targeted alterations in the ER alpha signaling pathways. We found that stimulation of Kiss1 expression by E(2) in the AVPV and inhibition of Dyn in the Arc required an ERE-dependent pathway, whereas the inhibition of Kiss1 expression by E(2) in the Arc involved ERE-independent mechanisms. Thus, distinct ER alpha signaling pathways can differentially regulate the expression of identical genes across different brain regions, and E(2) can act within the same neuron through divergent ER alpha signaling pathways to regulate different neurotransmitter genes.


Assuntos
Encéfalo/efeitos dos fármacos , Dinorfinas/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Proteínas/metabolismo , Animais , Núcleos Anteriores do Tálamo/efeitos dos fármacos , Núcleos Anteriores do Tálamo/metabolismo , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Encéfalo/metabolismo , Dinorfinas/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Introdução de Genes , Kisspeptinas , Hormônio Luteinizante/sangue , Camundongos , Camundongos Transgênicos , Núcleos da Linha Média do Tálamo/efeitos dos fármacos , Núcleos da Linha Média do Tálamo/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
12.
J Neurosci ; 29(12): 3920-9, 2009 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-19321788

RESUMO

Neurons that produce gonadotropin-releasing hormone (GnRH) are the final common pathway by which the brain regulates reproduction. GnRH neurons are regulated by an afferent network of kisspeptin-producing neurons. Kisspeptin binds to its cognate receptor on GnRH neurons and stimulates their activity, which in turn provides an obligatory signal for GnRH secretion, thus gating down-stream events supporting reproduction. We have developed kisspeptin antagonists to facilitate the direct determination of the role of kisspeptin neurons in the neuroendocrine regulation of reproduction. In vitro and in vivo studies of analogues of kisspeptin-10 with amino substitutions have identified several potent and specific antagonists. A selected antagonist was shown to inhibit the firing of GnRH neurons in the brain of the mouse and to reduce pulsatile GnRH secretion in female pubertal monkeys; the later supporting a key role of kisspeptin in puberty onset. This analog also inhibited the kisspeptin-induced release of luteinizing hormone (LH) in rats and mice and blocked the postcastration rise in LH in sheep, rats, and mice, suggesting that kisspeptin neurons mediate the negative feedback effect of sex steroids on gonadotropin secretion in mammals. The development of kisspeptin antagonists provides a valuable tool for investigating the physiological and pathophysiological roles of kisspeptin in the regulation of reproduction and could offer a unique therapeutic agent for treating hormone-dependent disorders of reproduction, including precocious puberty, endometriosis, and metastatic prostate cancer.


Assuntos
Hormônio Liberador de Gonadotropina/fisiologia , Peptídeos/farmacologia , Proteínas Supressoras de Tumor/antagonistas & inibidores , Potenciais de Ação , Animais , Encéfalo/fisiologia , Células CHO , Castração , Cricetinae , Cricetulus , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Técnicas In Vitro , Kisspeptinas , Hormônio Luteinizante/metabolismo , Macaca mulatta , Masculino , Camundongos , Microdiálise , Peptídeos/química , Ratos , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética , Receptores de Kisspeptina-1 , Ovinos , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/química
13.
Am J Physiol Endocrinol Metab ; 298(1): E80-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19861584

RESUMO

In female mammals, increased ovarian estradiol (E(2)) secretion triggers GnRH release from neurons in the basal forebrain, which drives LH secretion from the pituitary and subsequently induces ovulation. However, the neural circuits that activate this preovulatory GnRH/LH surge remain unidentified. Neurotensin is expressed in neurons of the anteroventral periventricular nucleus (AVPV), a region thought to be critical for generating the preovulatory GnRH/LH surge. E(2) induces neurotensin (Nts) gene expression in this region, and blockade of neurotensin signaling reduces the LH surge in the rat. We postulated that neurotensin signaling plays a similar role in generating the E(2)-induced GnRH/LH surge in mice. We used in situ hybridization (ISH) to determine whether E(2) induces Nts expression in the mouse and found evidence to support this proposition. Next, we determined that the neurotensin receptor (Ntsr2) is present in many GnRH-expressing neurons. Since the kisspeptin gene (Kiss1) is expressed in the AVPV and is responsive to E(2), we predicted that some neurons in this region express both Kiss1 and Nts; however, by double-label ISH, we observed no coexpression of the two mRNAs. We also postulated that Nts mRNA expression would increase in parallel with the E(2)-induced LH surge and that the central (icv) administration of neurotensin would stimulate LH secretion and activation of GnRH neurons but found no evidence to support either of these hypotheses. Together, these findings suggest that, although neurotensin neurons in the AVPV are targets for regulation by E(2), neurotensin does not appear to play a direct role in generating the GnRH/LH surge in the mouse.


Assuntos
Retroalimentação Fisiológica/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante/metabolismo , Neurônios/metabolismo , Neurotensina/metabolismo , Animais , Comunicação Celular/fisiologia , Estradiol/farmacologia , Estrogênios/farmacologia , Retroalimentação Fisiológica/efeitos dos fármacos , Feminino , Genes fos/fisiologia , Hipotálamo Médio/citologia , Hipotálamo Médio/fisiologia , Imuno-Histoquímica , Injeções Intraventriculares , Kisspeptinas , Eminência Mediana/citologia , Eminência Mediana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurotensina/genética , Ovariectomia , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , RNA Mensageiro/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
14.
Gen Comp Endocrinol ; 166(1): 66-71, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19686750

RESUMO

In songbirds, neurons that regulate learned song behavior undergo extensive seasonal plasticity in their number and size in relation to the bird's reproductive status. Seasonal plasticity of these brain regions is primarily regulated by changes in circulating concentrations of testosterone. Androgen receptors are present in all of the major song nuclei, but it is unknown whether levels of androgen receptor mRNA in the telencephalic song regions HVC, the robust nucleus of the arcopallium, and the lateral magnocellular nucleus of the anterior nidopallium change as a function of season in white-crowned sparrows. To determine whether seasonal changes in levels of androgen receptor mRNA are specific to the song control system, we also measured levels of androgen receptor mRNA in a limbic nucleus, the lateral division of the bed nucleus of the stria terminalis (the lateral division of the bed nucleus of the stria terminalis). We found that levels of androgen receptor mRNA were higher in HVC and the lateral division of the bed nucleus of the stria terminalis of birds in the breeding condition compared with the nonbreeding condition; however, we observed no seasonal differences in levels of androgen receptor mRNA in either the robust nucleus of the arcopallium or the lateral magnocellular nucleus of the anterior nidopallium. These results are consistent with previous observations that seasonal plasticity of the song nuclei results from testosterone acting directly on HVC, which then exerts transsynaptic trophic effects on its efferent targets. The seasonal change in the expression of androgen receptor in HVC may be one component of the cellular mechanisms underlying androgenic effects on seasonal plasticity of the song control nuclei.


Assuntos
Sistema Límbico/metabolismo , Receptores Androgênicos/genética , Telencéfalo/metabolismo , Vocalização Animal/fisiologia , Animais , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , RNA Mensageiro , Reprodução/fisiologia , Estações do Ano , Pardais
15.
Am J Physiol Endocrinol Metab ; 297(5): E1212-21, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19755669

RESUMO

In mammals, puberty onset typically occurs earlier in females than in males, but the explanation for sexual differentiation in the tempo of pubertal development is unknown. Puberty in both sexes is a brain-dependent phenomenon and involves alterations in the sensitivity of neuronal circuits to gonadal steroid feedback as well as gonadal hormone-independent changes in neuronal circuitry. Kisspeptin, encoded by the Kiss1 gene, plays an essential but ill-defined role in pubertal maturation. Neurokinin B (NKB) is coexpressed with Kiss1 in the arcuate nucleus (ARC) and is also important for puberty. We tested whether sex differences in the timing of pubertal development are attributable to sexual differentiation of gonadal hormone-independent mechanisms regulating hypothalamic Kiss1/NKB gene expression. We found that, in juvenile females, gonadotropin secretion and expression of Kiss1 and NKB in the ARC increased immediately following ovariectomy, suggesting that prepubertal females have negligible gonadal hormone-independent restraint on their reproductive axis. In contrast, in similarly aged juvenile males, no changes occurred in LH levels or Kiss1 or NKB expression following castration, suggesting that gonadal hormone-independent mechanisms restrain kisspeptin/NKB-dependent activation of the male reproductive axis before puberty. Notably, adult mice of both sexes showed comparable rapid increases in Kiss1/NKB expression and LH secretion following gonadectomy, signifying that sex differences in the regulation of ARC Kiss1/NKB neurons are manifest only during peripubertal development. Our findings demonstrate that the mechanisms controlling pubertal activation of reproduction in mice are different between the sexes and suggest that gonadal hormone-independent central restraint on pubertal timing involves Kiss1/NKB neurons in the ARC.


Assuntos
Kisspeptinas/biossíntese , Kisspeptinas/genética , Neurocinina B/biossíntese , Neurocinina B/genética , Neurônios/fisiologia , Maturidade Sexual/genética , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/fisiologia , Interpretação Estatística de Dados , Feminino , Regulação da Expressão Gênica/genética , Hormônios Esteroides Gonadais/fisiologia , Hibridização In Situ , Hormônio Luteinizante/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Orquiectomia , Ovariectomia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Caracteres Sexuais , Testosterona/sangue
16.
Trends Neurosci ; 30(10): 504-11, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17904653

RESUMO

Neurons that produce gonadotropin-releasing hormone (GnRH) drive the reproductive axis, but the molecular and cellular mechanisms by which hormonal and environmental signals regulate GnRH secretion remain poorly understood. Kisspeptins are products of the Kiss1 gene, and the interaction of kisspeptin and its receptor GPR54 plays a crucial role in governing the onset of puberty and adult reproductive function. This review discusses the latest ideas about kisspeptin-GPR54 signaling in the neuroendocrine regulation of reproduction, with special emphasis on the role of Kiss1 and kisspeptin in the negative and positive feedback control of gonadotropin secretion by sex steroids, timing of puberty onset, sexual differentiation of the brain and photoperiodic regulation of seasonal reproduction.


Assuntos
Sistemas Neurossecretores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Reprodução/fisiologia , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Humanos , Kisspeptinas , Receptores de Kisspeptina-1
17.
Peptides ; 30(1): 4-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18644415

RESUMO

The cancer suppressor gene, KISS1, was initially described as having an important role in inhibiting cancer metastasis. Since then, KISS1 and its receptor, KISS1R, have been shown to play a key role in controlling the onset of puberty of reproductive physiology in the human and other species. Recent studies have also linked KISS1/kisspeptin/KISS1R to other processes, such as vasoconstriction, aging, adipocyte physiology, and perhaps as a molecular conduit linking metabolism and reproduction. This article highlights the history of KISS1/kisspeptin/KISS1R biology and proposes a consensus for nomenclature of the key molecules in this signaling pathway.


Assuntos
Receptores Acoplados a Proteínas G , Terminologia como Assunto , Proteínas Supressoras de Tumor , Animais , Humanos , Hipotálamo/citologia , Hipotálamo/metabolismo , Kisspeptinas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Reprodução/fisiologia , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
18.
J Neurosci ; 27(44): 12088-95, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17978050

RESUMO

The Kiss1 gene codes for kisspeptin, which binds to GPR54, a G-protein-coupled receptor. Kisspeptin and GPR54 are expressed in discrete regions of the forebrain, and they have been implicated in the neuroendocrine regulation of reproduction. Kiss1-expressing neurons are thought to regulate the secretion of gonadotropin-releasing hormone (GnRH) and thus coordinate the estrous cycle in rodents; however, the precise role of kisspeptin-GPR54 signaling in the regulation of gonadotropin secretion is unknown. In this study, we used female mice with deletions in the GPR54 gene [GPR54 knock-outs (KOs)] to test the hypothesis that kisspeptin-GPR54 signaling provides the drive necessary for tonic GnRH/luteinizing hormone (LH) release. We predicted that tonic GnRH/LH secretion would be disrupted in GPR54 KOs and that such animals would be incapable of showing a compensatory rise in LH secretion after ovariectomy. As predicted, we found that GPR54 KO mice do not exhibit a postovariectomy rise in LH, suggesting that tonic GnRH secretion is disrupted in the absence of kisspeptin-GPR54 signaling. We also postulated that kisspeptin-GPR54 signaling is critical for the generation of the estradiol (E)-induced GnRH/LH surge and thus E should be incapable of inducing an LH surge in the absence of GPR54. However, we found that E induced Fos expression in GnRH neurons and produced a GnRH-dependent LH surge in GPR54 KOs. Thus, in mice, kisspeptin-GPR54 signaling is required for the tonic stimulation of GnRH/LH secretion but is not required for generating the E-induced GnRH/LH surge.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/fisiologia , Animais , Comportamento Animal , Encéfalo/citologia , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/genética , Kisspeptinas , Hormônio Luteinizante/sangue , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Oligopeptídeos/farmacologia , Proteínas Oncogênicas v-fos/genética , Proteínas Oncogênicas v-fos/metabolismo , Ovariectomia/métodos , Proteínas/genética , Radioimunoensaio/métodos , Receptores Acoplados a Proteínas G/deficiência , Receptores de Kisspeptina-1
19.
J Neurosci ; 27(33): 8826-35, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17699664

RESUMO

GPR54 is a G-protein-coupled receptor, which binds kisspeptins and is widely expressed throughout the brain. Kisspeptin-GPR54 signaling has been implicated in the regulation of pubertal and adulthood gonadotropin-releasing hormone (GnRH) secretion, and mutations or deletions of GPR54 cause hypogonadotropic hypogonadism in humans and mice. Other reproductive roles for kisspeptin-GPR54 signaling, including the regulation of developmental GnRH secretion or sexual behavior in adults, have not yet been explored. Using adult wild-type (WT) and GPR54 knock-out (KO) mice, we first tested whether kisspeptin-GPR54 signaling is necessary for male and female sexual behaviors. We found that hormone-replaced gonadectomized GPR54 KO males and females displayed appropriate gender-specific adult sexual behaviors. Next, we examined whether GPR54 signaling is required for proper display of olfactory-mediated partner preference behavior. Testosterone-treated WT males preferred stimulus females rather than males, whereas similarly treated WT females and GPR54 KO males showed no preference for either sex. Because olfactory preference is sexually dimorphic and organized during development by androgens, we assessed whether GPR54 signaling is essential for sexual differentiation of other sexually dimorphic traits. Interestingly, adult testosterone-treated GPR54 KO males displayed "female-like" numbers of tyrosine hydroxylase-immunoreactive and Kiss1 mRNA-containing neurons in the anteroventral periventricular nucleus and likewise possessed fewer motoneurons in the spino-bulbocavernosus nucleus than did WT males. Our findings indicate that kisspeptin-GPR54 signaling is not required for male or female copulatory behavior, provided there is appropriate adulthood hormone replacement. However, GPR54 is necessary for proper male-like development of several sexually dimorphic traits, likely by regulating GnRH-mediated androgen secretion during "critical windows" in perinatal development.


Assuntos
Encéfalo/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Diferenciação Sexual/fisiologia , Comportamento Sexual Animal/fisiologia , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Comportamento Animal/fisiologia , Encéfalo/citologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Kisspeptinas , Hormônio Luteinizante/sangue , Masculino , Camundongos , Camundongos Knockout , Neurônios/classificação , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas/genética , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Receptores de Kisspeptina-1 , Caracteres Sexuais , Diferenciação Sexual/efeitos dos fármacos , Diferenciação Sexual/genética , Comportamento Sexual Animal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Testosterona/farmacologia , Proteínas Supressoras de Tumor/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo
20.
Mol Cell Biol ; 25(11): 4804-11, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15899880

RESUMO

Galanin is a neuropeptide implicated in the regulation of feeding, reproduction, cognition, nociception, and seizure susceptibility. There are three known galanin receptor (GALR) subtypes (GALR1, GALR2, and GALR3), which bind to galanin with different affinities and have their own unique distributions, signaling mechanisms, and putative functions in the brain and peripheral nervous system. To gain further insight into the possible physiological significance of GALR2, we created mutant mice that were deficient in GALR2 and compared their phenotype to that of wild-type (WT) littermate or age-matched controls, with respect to basic motor and sensory function, feeding behavior, reproduction, mood, learning and memory, and seizure susceptibility. Phenotypic analysis revealed that animals bearing a deletion of GALR2 did not differ significantly from their WT controls in any of the measured variables. We conclude that either GALR2 plays no role in these physiological functions or through redundancy or compensation these mutant animals can adapt to the congenital absence of GALR2. It is also conceivable that GALR2 plays only a subtle role in some of these functions and that the impact of its loss could not be detected by the analytical procedures used here.


Assuntos
Fenótipo , Receptor Tipo 2 de Galanina/fisiologia , Animais , Peso Corporal/genética , Comportamento Alimentar , Feminino , Deleção de Genes , Aprendizagem , Masculino , Memória , Camundongos , Camundongos Knockout , Receptor Tipo 2 de Galanina/deficiência , Receptor Tipo 2 de Galanina/genética , Reprodução/genética , Convulsões/genética , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa