Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
PLoS Pathog ; 19(4): e1011309, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37104170

RESUMO

Prion diseases, also known as transmissible spongiform encephalopathies, are rare, progressive, and fatal neurodegenerative disorders, which are caused by the accumulation of the misfolded cellular prion protein (PrPC). The resulting cytotoxic prion species, referred to as the scrapie prion isoform (PrPSc), assemble in aggregates and interfere with neuronal pathways, ultimately rendering neurons dysfunctional. As the prion protein physiologically interacts with redox-active metals, an altered redox balance within the cell can impact these interactions, which may lead to and facilitate further misfolding and aggregation. The initiation of misfolding and the aggregation processes will, in turn, induce microglial activation and neuroinflammation, which leads to an imbalance in cellular redox homeostasis and enhanced redox stress. Potential approaches for therapeutics target redox signalling, and this review illustrates the pathways involved in the above processes.


Assuntos
Doenças Priônicas , Príons , Scrapie , Animais , Ovinos , Proteínas Priônicas/metabolismo , Príons/metabolismo , Scrapie/patologia , Oxirredução
2.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33653950

RESUMO

Several neurodegenerative diseases associated with protein misfolding (Alzheimer's and Parkinson's disease) exhibit oxidative and nitrergic stress following initiation of neuroinflammatory pathways. Associated nitric oxide (NO)-mediated posttranslational modifications impact upon protein functions that can exacerbate pathology. Nonenzymatic and irreversible glycation signaling has been implicated as an underlying pathway that promotes protein misfolding, but the direct interactions between both pathways are poorly understood. Here we investigated the therapeutic potential of pharmacologically suppressing neuroinflammatory NO signaling during early disease progression of prion-infected mice. Mice were injected daily with an NO synthase (NOS) inhibitor at early disease stages, hippocampal gene and protein expression levels of oxidative and nitrergic stress markers were analyzed, and electrophysiological characterization of pyramidal CA1 neurons was performed. Increased neuroinflammatory signaling was observed in mice between 6 and 10 wk postinoculation (w.p.i.) with scrapie prion protein. Their hippocampi were characterized by enhanced nitrergic stress associated with a decline in neuronal function by 9 w.p.i. Daily in vivo administration of the NOS inhibitor L-NAME between 6 and 9 w.p.i. at 20 mg/kg prevented the functional degeneration of hippocampal neurons in prion-diseased mice. We further found that this intervention in diseased mice reduced 3-nitrotyrosination of triose-phosphate isomerase, an enzyme involved in the formation of disease-associated glycation. Furthermore, L-NAME application led to a reduced expression of the receptor for advanced glycation end-products and the diminished accumulation of hippocampal prion misfolding. Our data suggest that suppressing neuroinflammatory NO signaling slows functional neurodegeneration and reduces nitrergic and glycation-associated cellular stress.


Assuntos
Região CA1 Hipocampal/metabolismo , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Doenças Priônicas/metabolismo , Transdução de Sinais , Animais , Camundongos , Camundongos Transgênicos , Óxido Nítrico/genética , Doenças Priônicas/genética
3.
Proc Natl Acad Sci U S A ; 117(27): 15694-15701, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571922

RESUMO

The p53 family member p73 has a complex gene structure, including alternative promoters and alternative splicing of the 3' UTR. This results in a complex range of isoforms whose biological relevance largely remains to be determined. By deleting exon 13 (which encodes a sterile α motif) from the Trp73 gene, we selectively engineered mice to replace the most abundantly expressed C-terminal isoform, p73α, with a shorter product of alternative splicing, p73ß. These mice (Trp73Δ13/Δ13 ) display severe neurodevelopmental defects with significant functional and morphological abnormalities. Replacement of p73α with p73ß results in the depletion of Cajal-Retzius (CR) cells in embryonic stages, thus depriving the developing hippocampus of the pool of neurons necessary for correct hippocampal architecture. Consequently, Trp73Δ13/Δ13 mice display severe hippocampal dysgenesis, reduced synaptic functionality and impaired learning and memory capabilities. Our data shed light on the relevance of p73 alternative splicing and show that the full-length C terminus of p73 is essential for hippocampal development.


Assuntos
Processamento Alternativo/genética , Desenvolvimento Embrionário/genética , Hipocampo/crescimento & desenvolvimento , Proteína Tumoral p73/genética , Animais , Apoptose/genética , Hipocampo/metabolismo , Humanos , Células Intersticiais de Cajal/metabolismo , Aprendizagem/fisiologia , Memória/fisiologia , Camundongos , Neurônios/metabolismo , Regiões Promotoras Genéticas
4.
Hippocampus ; 31(9): 1020-1038, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34047430

RESUMO

Regulation of neuronal activity is a necessity for communication and information transmission. Many regulatory processes which have been studied provide a complex picture of how neurons can respond to permanently changing functional requirements. One such activity-dependent mechanism involves signaling mediated by nitric oxide (NO). Within the brain, NO is generated in response to neuronal NO synthase (nNOS) activation but NO-dependent pathways regulating neuronal excitability in the hippocampus remain to be fully elucidated. This study was set out to systematically assess the effects of NO on ion channel activities and intrinsic excitabilities of pyramidal neurons within the CA1 region of the mouse hippocampus. We characterized whole-cell potassium and sodium currents, both involved in action potential (AP) shaping and propagation and determined NO-mediated changes in excitabilities and AP waveforms. Our data describe a novel signaling by which NO, in a cGMP-independent manner, suppresses voltage-gated Kv2 potassium and voltage-gated sodium channel activities, thereby widening AP waveforms and reducing depolarization-induced AP firing rates. Our data show that glutathione, which possesses denitrosylating activity, is sufficient to prevent the observed nitrergic effects on potassium and sodium channels, whereas inhibition of cGMP signaling is also sufficient to abolish NO modulation of sodium currents. We propose that NO suppresses both ion channel activities via redox signaling and that an additional cGMP-mediated component is required to exert effects on sodium currents. Both mechanisms result in a dampened excitability and firing ability providing new data on nitrergic activities in the context of activity-dependent regulation of neuronal function following nNOS activation.


Assuntos
Neurônios , Canais de Sódio Disparados por Voltagem , Potenciais de Ação/fisiologia , Animais , Hipocampo/fisiologia , Camundongos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio Shab , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/farmacologia
5.
PLoS Biol ; 16(4): e2003611, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29630591

RESUMO

Nitric oxide (NO) regulates neuronal function and thus is critical for tuning neuronal communication. Mechanisms by which NO modulates protein function and interaction include posttranslational modifications (PTMs) such as S-nitrosylation. Importantly, cross signaling between S-nitrosylation and prenylation can have major regulatory potential. However, the exact protein targets and resulting changes in function remain elusive. Here, we interrogated the role of NO-dependent PTMs and farnesylation in synaptic transmission. We found that NO compromises synaptic function at the Drosophila neuromuscular junction (NMJ) in a cGMP-independent manner. NO suppressed release and reduced the size of available vesicle pools, which was reversed by glutathione (GSH) and occluded by genetic up-regulation of GSH-generating and de-nitrosylating glutamate-cysteine-ligase and S-nitroso-glutathione reductase activities. Enhanced nitrergic activity led to S-nitrosylation of the fusion-clamp protein complexin (cpx) and altered its membrane association and interactions with active zone (AZ) and soluble N-ethyl-maleimide-sensitive fusion protein Attachment Protein Receptor (SNARE) proteins. Furthermore, genetic and pharmacological suppression of farnesylation and a nitrosylation mimetic mutant of cpx induced identical physiological and localization phenotypes as caused by NO. Together, our data provide evidence for a novel physiological nitrergic molecular switch involving S-nitrosylation, which reversibly suppresses farnesylation and thereby enhances the net-clamping function of cpx. These data illustrate a new mechanistic signaling pathway by which regulation of farnesylation can fine-tune synaptic release.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores/metabolismo , Óxido Nítrico/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Adaptadoras de Transporte Vesicular/genética , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Animais , Encéfalo/metabolismo , GMP Cíclico/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Larva/genética , Larva/metabolismo , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular/citologia , Junção Neuromuscular/metabolismo , Fenótipo , Prenilação , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/metabolismo
6.
Nature ; 518(7538): 236-9, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25607368

RESUMO

In the healthy adult brain synapses are continuously remodelled through a process of elimination and formation known as structural plasticity. Reduction in synapse number is a consistent early feature of neurodegenerative diseases, suggesting deficient compensatory mechanisms. Although much is known about toxic processes leading to synaptic dysfunction and loss in these disorders, how synaptic regeneration is affected is unknown. In hibernating mammals, cooling induces loss of synaptic contacts, which are reformed on rewarming, a form of structural plasticity. We have found that similar changes occur in artificially cooled laboratory rodents. Cooling and hibernation also induce a number of cold-shock proteins in the brain, including the RNA binding protein, RBM3 (ref. 6). The relationship of such proteins to structural plasticity is unknown. Here we show that synapse regeneration is impaired in mouse models of neurodegenerative disease, in association with the failure to induce RBM3. In both prion-infected and 5XFAD (Alzheimer-type) mice, the capacity to regenerate synapses after cooling declined in parallel with the loss of induction of RBM3. Enhanced expression of RBM3 in the hippocampus prevented this deficit and restored the capacity for synapse reassembly after cooling. RBM3 overexpression, achieved either by boosting endogenous levels through hypothermia before the loss of the RBM3 response or by lentiviral delivery, resulted in sustained synaptic protection in 5XFAD mice and throughout the course of prion disease, preventing behavioural deficits and neuronal loss and significantly prolonging survival. In contrast, knockdown of RBM3 exacerbated synapse loss in both models and accelerated disease and prevented the neuroprotective effects of cooling. Thus, deficient synapse regeneration, mediated at least in part by failure of the RBM3 stress response, contributes to synapse loss throughout the course of neurodegenerative disease. The data support enhancing cold-shock pathways as potential protective therapies in neurodegenerative disorders.


Assuntos
Temperatura Baixa , Resposta ao Choque Frio/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Plasticidade Neuronal , Fármacos Neuroprotetores , Proteínas de Ligação a RNA/metabolismo , Sinapses/metabolismo , Doença de Alzheimer/metabolismo , Animais , Proteínas e Peptídeos de Choque Frio/metabolismo , Modelos Animais de Doenças , Hibernação/fisiologia , Hipocampo/metabolismo , Masculino , Camundongos , Príons/fisiologia , Proteínas de Ligação a RNA/genética , Regeneração
7.
J Physiol ; 598(11): 2199-2222, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32246836

RESUMO

KEY POINTS: Kv3.1 and Kv3.3 subunits are highly expressed in the auditory brainstem, with little or no mRNA for Kv3.2 or Kv3.4. Changes in Kv3 currents and action potential (AP) firing were analysed from wild-type, Kv3.1 and Kv3.3 knockout (KO) mice. Both Kv3.1 and Kv3.3 immunostaining was present and western blots confirmed loss of subunit protein in the respective KO. Medial nucleus of the trapezoid body (MNTB) AP repolarization utilized Kv3.1 and/or Kv3.3; while in the lateral superior olive (LSO) Kv3.3 was essential. Voltage-gated calcium currents were unchanged between the genotypes. But APs evoked higher [Ca2+ ]i in LSO than MNTB neurons; and were highest in the Kv3.3KO, consistent with longer AP durations. High frequency stimulation increased AP failure rates and AP latency in LSO neurons from the Kv3.3KO, underlining the physiological consequences for binaural integration. LSO neurons require Kv3.3 for functional Kv3 channels, while MNTB neurons can utilize either Kv3.1 or Kv3.3 subunits. ABSTRACT: Kv3 voltage-gated potassium channels mediate action potential (AP) repolarization. The relative importance of Kv3.1 and Kv3.3 subunits for assembly of functional channels in neurons of the auditory brainstem was examined from the physiological perspective that speed and precision of AP firing are crucial for sound source localization. High levels of Kv3.1 and Kv3.3 mRNA and protein were measured, with no evidence of compensation by Kv3.2 or Kv3.4 in the respective knockout (KO) mouse. Using the KOs, composition of Kv3 channels was constrained to either Kv3.1 or Kv3.3 subunits in principal neurons of the medial nucleus of the trapezoid body (MNTB) and lateral superior olive (LSO); while TEA (1 mm) was employed to block Kv3-mediated outward potassium currents in voltage- and current clamp experiments. MNTB neuron APs (half-width 0.31 ± 0.08 ms, n = 25) were fast, reliable, and showed no distinction between channels assembled from Kv3.1 or Kv3.3 subunits (in the respective KO). LSO AP half-widths were also fast, but absolutely required Kv3.3 subunits for fast repolarization (half-widths: 0.25 ± 0.08 ms, n = 19 wild-type, 0.60 ± 0.17 ms, n = 21 Kv3.3KO, p = 0.0001). The longer AP duration increased LSO calcium influx and AP failure rates, and increased AP latency and jitter during high frequency repetitive firing. Both Kv3.1 and Kv3.3 subunits contribute to Kv3 channels in the MNTB (and compensate for each other in each KO); in contrast, LSO neurons require Kv3.3 subunits for fast repolarization and to sustain AP firing during high frequency stimulation. In conclusion, Kv3 channels exhibit both redundancy and Kv3.3 dominance between the brainstem nuclei involved in sound localization.


Assuntos
Vias Auditivas , Corpo Trapezoide , Potenciais de Ação , Animais , Tronco Encefálico , Camundongos , Neurônios
8.
Development ; 144(13): 2445-2455, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28533206

RESUMO

Growth factors of the TGFß superfamily play key roles in regulating neuronal and muscle function. Myostatin (or GDF8) and GDF11 are potent negative regulators of skeletal muscle mass. However, expression of myostatin and its cognate receptors in other tissues, including brain and peripheral nerves, suggests a potential wider biological role. Here, we show that Myoglianin (MYO), the Drosophila homolog of myostatin and GDF11, regulates not only body weight and muscle size, but also inhibits neuromuscular synapse strength and composition in a Smad2-dependent manner. Both myostatin and GDF11 affected synapse formation in isolated rat cortical neuron cultures, suggesting an effect on synaptogenesis beyond neuromuscular junctions. We also show that MYO acts in vivo to inhibit synaptic transmission between neurons in the escape response neural circuit of adult flies. Thus, these anti-myogenic proteins act as important inhibitors of synapse function and neuronal growth.


Assuntos
Forma Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Miostatina/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Sinapses/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Peso Corporal , Regulação para Baixo/genética , Drosophila melanogaster/citologia , Inativação Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , Humanos , Larva/metabolismo , Células Musculares/metabolismo , Neuroglia/metabolismo , Junção Neuromuscular/metabolismo , Ratos , Transdução de Sinais , Transmissão Sináptica
9.
Nature ; 485(7399): 507-11, 2012 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-22622579

RESUMO

The mechanisms leading to neuronal death in neurodegenerative disease are poorly understood. Many of these disorders, including Alzheimer's, Parkinson's and prion diseases, are associated with the accumulation of misfolded disease-specific proteins. The unfolded protein response is a protective cellular mechanism triggered by rising levels of misfolded proteins. One arm of this pathway results in the transient shutdown of protein translation, through phosphorylation of the α-subunit of eukaryotic translation initiation factor, eIF2. Activation of the unfolded protein response and/or increased eIF2α-P levels are seen in patients with Alzheimer's, Parkinson's and prion diseases, but how this links to neurodegeneration is unknown. Here we show that accumulation of prion protein during prion replication causes persistent translational repression of global protein synthesis by eIF2α-P, associated with synaptic failure and neuronal loss in prion-diseased mice. Further, we show that promoting translational recovery in hippocampi of prion-infected mice is neuroprotective. Overexpression of GADD34, a specific eIF2α-P phosphatase, as well as reduction of levels of prion protein by lentivirally mediated RNA interference, reduced eIF2α-P levels. As a result, both approaches restored vital translation rates during prion disease, rescuing synaptic deficits and neuronal loss, thereby significantly increasing survival. In contrast, salubrinal, an inhibitor of eIF2α-P dephosphorylation, increased eIF2α-P levels, exacerbating neurotoxicity and significantly reducing survival in prion-diseased mice. Given the prevalence of protein misfolding and activation of the unfolded protein response in several neurodegenerative diseases, our results suggest that manipulation of common pathways such as translational control, rather than disease-specific approaches, may lead to new therapies preventing synaptic failure and neuronal loss across the spectrum of these disorders.


Assuntos
Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/metabolismo , Doenças Neurodegenerativas/metabolismo , Fosfoproteínas/metabolismo , Príons/metabolismo , Biossíntese de Proteínas , Proteínas Repressoras/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Cinamatos/farmacologia , Fator de Iniciação 2 em Eucariotos/análise , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/patologia , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores , Fosfoproteínas/análise , Fosforilação , Proteínas PrPSc/análise , Proteínas PrPSc/metabolismo , Proteínas PrPSc/toxicidade , Doenças Priônicas/patologia , Príons/biossíntese , Príons/genética , Biossíntese de Proteínas/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas Repressoras/análise , Proteínas Repressoras/química , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Transmissão Sináptica/efeitos dos fármacos , Tioureia/análogos & derivados , Tioureia/farmacologia , Resposta a Proteínas não Dobradas/fisiologia
10.
Hum Mol Genet ; 24(4): 1077-91, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25305083

RESUMO

A central pathological hallmark of Parkinson's disease (PD) is the presence of proteinaceous depositions known as Lewy bodies, which consist largely of the protein α-synuclein (aSyn). Mutations, multiplications and polymorphisms in the gene encoding aSyn are associated with familial forms of PD and susceptibility to idiopathic PD. Alterations in aSyn impair neuronal vesicle formation/transport, and likely contribute to PD pathogenesis by neuronal dysfunction and degeneration. aSyn is functionally associated with several Rab family GTPases, which perform various roles in vesicle trafficking. Here, we explore the role of the endosomal recycling factor Rab11 in the pathogenesis of PD using Drosophila models of aSyn toxicity. We find that aSyn induces synaptic potentiation at the larval neuromuscular junction by increasing synaptic vesicle (SV) size, and that these alterations are reversed by Rab11 overexpression. Furthermore, Rab11 decreases aSyn aggregation and ameliorates several aSyn-dependent phenotypes in both larvae and adult fruit flies, including locomotor activity, degeneration of dopaminergic neurons and shortened lifespan. This work emphasizes the importance of Rab11 in the modulation of SV size and consequent enhancement of synaptic function. Our results suggest that targeting Rab11 activity could have a therapeutic value in PD.


Assuntos
Transmissão Sináptica , alfa-Sinucleína/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/patologia , Neurônios Dopaminérgicos/metabolismo , Drosophila , Feminino , Expressão Gênica , Modelos Biológicos , Junção Neuromuscular/metabolismo , Doença de Parkinson/metabolismo , Fenótipo , Transporte Proteico , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , alfa-Sinucleína/genética
11.
Hum Mol Genet ; 23(17): 4581-96, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24722203

RESUMO

The cellular prion protein (PrP(C)) has been implicated in several neurodegenerative diseases as a result of protein misfolding. In humans, prion disease occurs typically with a sporadic origin where uncharacterized mechanisms induce spontaneous PrP(C) misfolding leading to neurotoxic PrP-scrapie formation (PrP(SC)). The consequences of misfolded PrP(C) signalling are well characterized but little is known about the physiological roles of PrP(C) and its involvement in disease. Here we investigated wild-type PrP(C) signalling in synaptic function as well as the effects of a disease-relevant mutation within PrP(C) (proline-to-leucine mutation at codon 101). Expression of wild-type PrP(C) at the Drosophila neuromuscular junction leads to enhanced synaptic responses as detected in larger miniature synaptic currents which are caused by enlarged presynaptic vesicles. The expression of the mutated PrP(C) leads to reduction of both parameters compared with wild-type PrP(C). Wild-type PrP(C) enhances synaptic release probability and quantal content but reduces the size of the ready-releasable vesicle pool. Partially, these changes are not detectable following expression of the mutant PrP(C). A behavioural test revealed that expression of either protein caused an increase in locomotor activities consistent with enhanced synaptic release and stronger muscle contractions. Both proteins were sensitive to proteinase digestion. These data uncover new functions of wild-type PrP(C) at the synapse with a disease-relevant mutation in PrP(C) leading to diminished functional phenotypes. Thus, our data present essential new information possibly related to prion pathogenesis in which a functional synaptic role of PrP(C) is compromised due to its advanced conversion into PrP(SC) thereby creating a lack-of-function scenario.


Assuntos
Príons/metabolismo , Probabilidade , Vesículas Sinápticas/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Endopeptidase K/metabolismo , Larva/efeitos dos fármacos , Larva/ultraestrutura , Camundongos , Atividade Motora/efeitos dos fármacos , Proteínas Mutantes/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/patologia , Junção Neuromuscular/ultraestrutura , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/ultraestrutura
12.
Proc Natl Acad Sci U S A ; 110(47): 18952-7, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24190996

RESUMO

Total and N-terminal isoform selective p73 knockout mice show a variety of central nervous system defects. Here we show that TAp73 is a transcriptional activator of p75 neurotrophin receptor (p75(NTR)) and that p75(NTR) mRNA and protein levels are strongly reduced in the central and peripheral nervous systems of p73 knockout mice. In parallel, primary cortical neurons from p73 knockout mice showed a reduction in neurite outgrowth and in nerve growth factor-mediated neuronal differentiation, together with reduced miniature excitatory postsynaptic current frequencies and behavioral defects. p73 null mice also have impairments in the peripheral nervous system with reduced thermal sensitivity, axon number, and myelin thickness. At least some of these morphological and functional impairments in p73 null cells can be rescued by p75(NTR) re-expression. Together, these data demonstrate that loss of p75(NTR) contributes to the neurological phenotype of p73 knockout mice.


Assuntos
Malformações do Sistema Nervoso/genética , Neuritos/patologia , Proteínas Nucleares/genética , Receptores de Fator de Crescimento Neural/deficiência , Animais , Western Blotting , Encéfalo/metabolismo , Biologia Computacional , Camundongos , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura/genética , Bainha de Mielina/metabolismo , Malformações do Sistema Nervoso/patologia , Neuritos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional/genética
13.
J Neurosci ; 33(21): 9113-21, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23699522

RESUMO

The central auditory brainstem provides an efferent projection known as the medial olivocochlear (MOC) system, which regulates the cochlear amplifier and mediates protection on exposure to loud sound. It arises from neurons of the ventral nucleus of the trapezoid body (VNTB), so control of neuronal excitability in this pathway has profound effects on hearing. The VNTB and the medial nucleus of the trapezoid body are the only sites of expression for the Kv2.2 voltage-gated potassium channel in the auditory brainstem, consistent with a specialized function of these channels. In the absence of unambiguous antagonists, we used recombinant and transgenic methods to examine how Kv2.2 contributes to MOC efferent function. Viral gene transfer of dominant-negative Kv2.2 in wild-type mice suppressed outward K(+) currents, increasing action potential (AP) half-width and reducing repetitive firing. Similarly, VNTB neurons from Kv2.2 knock-out mice (Kv2.2KO) also showed increased AP duration. Control experiments established that Kv2.2 was not expressed in the cochlea, so any changes in auditory function in the Kv2.2KO mouse must be of central origin. Further, in vivo recordings of auditory brainstem responses revealed that these Kv2.2KO mice were more susceptible to noise-induced hearing loss. We conclude that Kv2.2 regulates neuronal excitability in these brainstem nuclei by maintaining short APs and enhancing high-frequency firing. This safeguards efferent MOC firing during high-intensity sounds and is crucial in the mediation of protection after auditory overexposure.


Assuntos
Vias Auditivas/fisiologia , Cóclea/fisiologia , Perda Auditiva/prevenção & controle , Ruído/efeitos adversos , Núcleo Olivar/fisiologia , Canais de Potássio Shab/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Animais Recém-Nascidos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Perda Auditiva/etiologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Mutação/genética , Neuroblastoma/patologia , Técnicas de Patch-Clamp , Canais de Potássio Shab/deficiência , Canais de Potássio Shaw/metabolismo , Transfecção
14.
Hum Mol Genet ; 21(13): 2912-22, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22466800

RESUMO

Synapse abnormalities in Huntington's disease (HD) patients can precede clinical diagnosis and neuron loss by decades. The polyglutamine expansion in the huntingtin (htt) protein that underlies this disorder leads to perturbations in many cellular pathways, including the disruption of Rab11-dependent endosomal recycling. Impairment of the small GTPase Rab11 leads to the defective formation of vesicles in HD models and may thus contribute to the early stages of the synaptic dysfunction in this disorder. Here, we employ transgenic Drosophila melanogaster models of HD to investigate anomalies at the synapse and the role of Rab11 in this pathology. We find that the expression of mutant htt in the larval neuromuscular junction decreases the presynaptic vesicle size, reduces quantal amplitudes and evoked synaptic transmission and alters larval crawling behaviour. Furthermore, these indicators of early synaptic dysfunction are reversed by the overexpression of Rab11. This work highlights a potential novel HD therapeutic strategy for early intervention, prior to neuronal loss and clinical manifestation of disease.


Assuntos
Proteínas de Drosophila/metabolismo , Doença de Huntington/genética , Junção Neuromuscular/fisiologia , Transmissão Sináptica , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster , Fenômenos Eletrofisiológicos , Proteína Huntingtina , Doença de Huntington/metabolismo , Larva/genética , Proteínas Associadas aos Microtúbulos/genética , Degeneração Neural , Sinapses/fisiologia , Potenciais Sinápticos , Proteínas rab de Ligação ao GTP/genética
15.
Proc Natl Acad Sci U S A ; 108(52): 21099-104, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22160706

RESUMO

The p53 family member TAp73 is a transcription factor that plays a key role in many biological processes, including neuronal development. In particular, we have shown that p73 drives the expression of miR-34a, but not miR-34b and c, in mouse cortical neurons. miR-34a in turn modulates the expression of synaptic targets including synaptotagmin-1 and syntaxin-1A. Here we show that this axis is retained in mouse ES cells committed to differentiate toward a neurological phenotype. Moreover, overexpression of miR-34a alters hippocampal spinal morphology, and results in electrophysiological changes consistent with a reduction in spinal function. Therefore, the TAp73/miR-34a axis has functional relevance in primary neurons. These data reinforce a role for miR-34a in neuronal development.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , MicroRNAs/metabolismo , Neuritos/fisiologia , Proteínas Nucleares/metabolismo , Coluna Vertebral/citologia , Animais , Western Blotting , Diferenciação Celular/genética , Eletrofisiologia , Células-Tronco Embrionárias/metabolismo , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase em Tempo Real , Coluna Vertebral/fisiologia , Sinaptotagmina I/metabolismo , Sintaxina 1/metabolismo
16.
Free Radic Biol Med ; 194: 71-83, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435368

RESUMO

Nitric oxide and other redox active molecules such as oxygen free radicals provide essential signalling in diverse neuronal functions, but their excess production and insufficient scavenging induces cytotoxic redox stress which is associated with numerous neurodegenerative and neurological conditions. A further component of redox signalling is mediated by a homeostatic regulation of divalent metal ions, the imbalance of which contributes to neuronal dysfunction. Additional antioxidant molecules such as glutathione and enzymes such as super oxide dismutase are involved in maintaining a physiological redox status within neurons. When cellular processes are perturbed and generation of free radicals overwhelms the antioxidants capacity of the neurons, a resulting redox damage leads to neuronal dysfunction and cell death. Cellular sources for production of redox-active molecules may include NADPH oxidases, mitochondria, cytochrome P450 and nitric oxide (NO)-generating enzymes, such as endothelial, neuronal and inducible NO synthases. Several neurodegenerative and developmental neurological conditions are associated with an imbalanced redox state as a result of neuroinflammatory processes leading to nitrosative and oxidative stress. Ongoing research aims at understanding the causes and consequences of such imbalanced redox homeostasis and its role in neuronal dysfunction.


Assuntos
Doenças Neurodegenerativas , Óxido Nítrico , Humanos , Estresse Oxidativo/fisiologia , Oxirredução , Antioxidantes/metabolismo , Radicais Livres/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Front Synaptic Neurosci ; 15: 1124061, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926383

RESUMO

Introduction: Numerous neurodegenerative diseases are associated with neuronal dysfunction caused by increased redox stress, often linked to aberrant production of redox-active molecules such as nitric oxide (NO) or oxygen free radicals. One such protein affected by redox-mediated changes is the glycolytic enzyme triose-phosphate isomerase (TPI), which has been shown to undergo 3-nitrotyrosination (a NO-mediated post-translational modification) rendering it inactive. The resulting neuronal changes caused by this modification are not well understood. However, associated glycation-induced cytotoxicity has been reported, thus potentially causing neuronal and synaptic dysfunction via compromising synaptic vesicle recycling. Methods: This work uses Drosophila melanogaster to identify the impacts of altered TPI activity on neuronal physiology, linking aberrant TPI function and redox stress to neuronal defects. We used Drosophila mutants expressing a missense allele of the TPI protein, M81T, identified in a previous screen and resulting in an inactive mutant of the TPI protein (TPIM81T , wstd1). We assessed synaptic physiology at the glutamatergic Drosophila neuromuscular junction (NMJ), synapse morphology and behavioural phenotypes, as well as impacts on longevity. Results: Electrophysiological recordings of evoked and spontaneous excitatory junctional currents, alongside high frequency train stimulations and recovery protocols, were applied to investigate synaptic depletion and subsequent recovery. Single synaptic currents were unaltered in the presence of the wstd1 mutation, but frequencies of spontaneous events were reduced. Wstd1 larvae also showed enhanced vesicle depletion rates at higher frequency stimulation, and subsequent recovery times for evoked synaptic responses were prolonged. A computational model showed that TPI mutant larvae exhibited a significant decline in activity-dependent vesicle recycling, which manifests itself as increased recovery times for the readily-releasable vesicle pool. Confocal images of NMJs showed no morphological or developmental differences between wild-type and wstd1 but TPI mutants exhibited learning impairments as assessed by olfactory associative learning assays. Discussion: Our data suggests that the wstd1 phenotype is partially due to altered vesicle dynamics, involving a reduced vesicle pool replenishment, and altered endo/exocytosis processes. This may result in learning and memory impairments and neuronal dysfunction potentially also presenting a contributing factor to other reported neuronal phenotypes.

18.
Cells ; 12(17)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37681895

RESUMO

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterised by progressive degeneration of the motor neurones. An expanded GGGGCC (G4C2) hexanucleotide repeat in C9orf72 is the most common genetic cause of ALS and frontotemporal dementia (FTD); therefore, the resulting disease is known as C9ALS/FTD. Here, we employ a Drosophila melanogaster model of C9ALS/FTD (C9 model) to investigate a role for specific medium-chain fatty acids (MCFAs) in reversing pathogenic outcomes. Drosophila larvae overexpressing the ALS-associated dipeptide repeats (DPRs) in the nervous system exhibit reduced motor function and neuromuscular junction (NMJ) defects. We show that two MCFAs, nonanoic acid (NA) and 4-methyloctanoic acid (4-MOA), can ameliorate impaired motor function in C9 larvae and improve NMJ degeneration, although their mechanisms of action are not identical. NA modified postsynaptic glutamate receptor density, whereas 4-MOA restored defects in the presynaptic vesicular release. We also demonstrate the effects of NA and 4-MOA on metabolism in C9 larvae and implicate various metabolic pathways as dysregulated in our ALS model. Our findings pave the way to identifying novel therapeutic targets and potential treatments for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doenças Neurodegenerativas , Animais , Esclerose Lateral Amiotrófica/genética , Drosophila , Drosophila melanogaster , Ácidos Graxos , Junção Neuromuscular , Larva
19.
Open Biol ; 13(9): 230171, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37699519

RESUMO

Alterations in the neuromuscular system underlie several neuromuscular diseases and play critical roles in the development of sarcopenia, the age-related loss of muscle mass and function. Mammalian Myostatin (MST) and GDF11, members of the TGF-ß superfamily of growth factors, are powerful regulators of muscle size in both model organisms and humans. Myoglianin (MYO), the Drosophila homologue of MST and GDF11, is a strong inhibitor of synaptic function and structure at the neuromuscular junction in flies. Here, we identified Plum, a transmembrane cell surface protein, as a modulator of MYO function in the larval neuromuscular system. Reduction of Plum in the larval body-wall muscles abolishes the previously demonstrated positive effect of attenuated MYO signalling on both muscle size and neuromuscular junction structure and function. In addition, downregulation of Plum on its own results in decreased synaptic strength and body weight, classifying Plum as a (novel) regulator of neuromuscular function and body (muscle) size. These findings offer new insights into possible regulatory mechanisms behind ageing- and disease-related neuromuscular dysfunctions in humans and identify potential targets for therapeutic interventions.


Assuntos
Drosophila melanogaster , Prunus domestica , Animais , Humanos , Envelhecimento , Proteínas Morfogenéticas Ósseas , Regulação para Baixo , Drosophila , Fatores de Diferenciação de Crescimento , Larva , Mamíferos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa