Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 88: 811-837, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30388027

RESUMO

Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) are the most potent toxins known and cause botulism and tetanus, respectively. BoNTs are also widely utilized as therapeutic toxins. They contain three functional domains responsible for receptor-binding, membrane translocation, and proteolytic cleavage of host proteins required for synaptic vesicle exocytosis. These toxins also have distinct features: BoNTs exist within a progenitor toxin complex (PTC), which protects the toxin and facilitates its absorption in the gastrointestinal tract, whereas TeNT is uniquely transported retrogradely within motor neurons. Our increasing knowledge of these toxins has allowed the development of engineered toxins for medical uses. The discovery of new BoNTs and BoNT-like proteins provides additional tools to understand the evolution of the toxins and to engineer toxin-based therapeutics. This review summarizes the progress on our understanding of BoNTs and TeNT, focusing on the PTC, receptor recognition, new BoNT-like toxins, and therapeutic toxin engineering.


Assuntos
Toxinas Botulínicas/uso terapêutico , Metaloendopeptidases/uso terapêutico , Toxina Tetânica/uso terapêutico , Animais , Toxinas Botulínicas/metabolismo , Toxinas Botulínicas/toxicidade , Humanos , Metaloendopeptidases/metabolismo , Metaloendopeptidases/toxicidade , Conformação Proteica , Engenharia de Proteínas , Toxina Tetânica/metabolismo , Toxina Tetânica/toxicidade
2.
J Biol Chem ; 299(10): 105256, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716703

RESUMO

The glycosyltransferase WaaG in Pseudomonas aeruginosa (PaWaaG) is involved in the synthesis of the core region of lipopolysaccharides. It is a promising target for developing adjuvants that could help in the uptake of antibiotics. Herein, we have determined structures of PaWaaG in complex with the nucleotide-sugars UDP-glucose, UDP-galactose, and UDP-GalNAc. Structural comparison with the homolog from Escherichia coli (EcWaaG) revealed five key differences in the sugar-binding pocket. Solution-state NMR analysis showed that WT PaWaaG specifically hydrolyzes UDP-GalNAc and unlike EcWaaG, does not hydrolyze UDP-glucose. Furthermore, we found that a PaWaaG mutant (Y97F/T208R/N282A/T283A/T285I) designed to resemble the EcWaaG sugar binding site, only hydrolyzed UDP-glucose, underscoring the importance of the identified amino acids in substrate specificity. However, neither WT PaWaaG nor the PaWaaG mutant capable of hydrolyzing UDP-glucose was able to complement an E. coli ΔwaaG strain, indicating that more remains to be uncovered about the function of PaWaaG in vivo. This structural and biochemical information will guide future structure-based drug design efforts targeting PaWaaG.

3.
J Biol Chem ; 298(8): 102169, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35732208

RESUMO

Remdesivir and molnupiravir have gained considerable interest because of their demonstrated activity against SARS-CoV-2. These antivirals are converted intracellularly to their active triphosphate forms remdesivir-TP and molnupiravir-TP. Cellular hydrolysis of these active metabolites would consequently decrease the efficiency of these drugs; however, whether endogenous enzymes that can catalyze this hydrolysis exist is unknown. Here, we tested remdesivir-TP as a substrate against a panel of human hydrolases and found that only Nudix hydrolase (NUDT) 18 catalyzed the hydrolysis of remdesivir-TP with notable activity. The kcat/Km value of NUDT18 for remdesivir-TP was determined to be 17,700 s-1M-1, suggesting that NUDT18-catalyzed hydrolysis of remdesivir-TP may occur in cells. Moreover, we demonstrate that the triphosphates of the antivirals ribavirin and molnupiravir are also hydrolyzed by NUDT18, albeit with lower efficiency than Remdesivir-TP. Low activity was also observed with the triphosphate forms of sofosbuvir and aciclovir. This is the first report showing that NUDT18 hydrolyzes triphosphates of nucleoside analogs of exogenous origin, suggesting that NUDT18 can act as a cellular sanitizer of modified nucleotides and may influence the antiviral efficacy of remdesivir, molnupiravir, and ribavirin. As NUDT18 is expressed in respiratory epithelial cells, it may limit the antiviral efficacy of remdesivir and molnupiravir against SARS-CoV-2 replication by decreasing the intracellular concentration of their active metabolites at their intended site of action.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/metabolismo , Antivirais/farmacologia , Citidina/análogos & derivados , Humanos , Hidrólise , Hidroxilaminas , Polifosfatos , Pirofosfatases , Ribavirina/farmacologia , Ribavirina/uso terapêutico , SARS-CoV-2 , Nudix Hidrolases
4.
PLoS Biol ; 18(3): e3000618, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32182233

RESUMO

Botulinum neurotoxins (BoNTs) are a family of bacterial toxins with seven major serotypes (BoNT/A-G). The ability of these toxins to target and bind to motor nerve terminals is a key factor determining their potency and efficacy. Among these toxins, BoNT/B is one of the two types approved for medical and cosmetic uses. Besides binding to well-established receptors, an extended loop in the C-terminal receptor-binding domain (HC) of BoNT/B (HC/B) has been proposed to also contribute to toxin binding to neurons by interacting with lipid membranes (termed lipid-binding loop [LBL]). Analogous loops exist in the HCs of BoNT/C, D, G, and a chimeric toxin DC. However, it has been challenging to detect and characterize binding of LBLs to lipid membranes. Here, using the nanodisc system and biolayer interferometry assays, we find that HC/DC, C, and G, but not HC/B and HC/D, are capable of binding to receptor-free lipids directly, with HC/DC having the highest level of binding. Mutagenesis studies demonstrate the critical role of consecutive aromatic residues at the tip of the LBL for binding of HC/DC to lipid membranes. Taking advantage of this insight, we then create a "gain-of-function" mutant HC/B by replacing two nonaromatic residues at the tip of its LBL with tryptophan. Cocrystallization studies confirm that these two tryptophan residues do not alter the structure of HC/B or the interactions with its receptors. Such a mutated HC/B gains the ability to bind receptor-free lipid membranes and shows enhanced binding to cultured neurons. Finally, full-length BoNT/B containing two tryptophan mutations in its LBL, together with two additional mutations (E1191M/S1199Y) that increase binding to human receptors, is produced and evaluated in mice in vivo using Digit Abduction Score assays. This mutant toxin shows enhanced efficacy in paralyzing local muscles at the injection site and lower systemic diffusion, thus extending both safety range and duration of paralysis compared with the control BoNT/B. These findings establish a mechanistic understanding of LBL-lipid interactions and create a modified BoNT/B with improved therapeutic efficacy.


Assuntos
Toxinas Botulínicas Tipo A/metabolismo , Toxinas Botulínicas Tipo A/farmacologia , Membrana Celular/metabolismo , Animais , Sítios de Ligação , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/genética , Células Cultivadas , Cristalografia por Raios X , Feminino , Gangliosídeos/metabolismo , Lipídeos de Membrana/metabolismo , Camundongos , Músculo Esquelético/efeitos dos fármacos , Mutação , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Paralisia/induzido quimicamente , Engenharia de Proteínas , Ratos Transgênicos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Sinaptotagminas/metabolismo , Triptofano/química , Triptofano/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(10): 5394-5401, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094176

RESUMO

As a prototype of genomics-guided precision medicine, individualized thiopurine dosing based on pharmacogenetics is a highly effective way to mitigate hematopoietic toxicity of this class of drugs. Recently, NUDT15 deficiency was identified as a genetic cause of thiopurine toxicity, and NUDT15-informed preemptive dose reduction was quickly adopted in clinical settings. To exhaustively identify pharmacogenetic variants in this gene, we developed massively parallel NUDT15 function assays to determine the variants' effect on protein abundance and thiopurine cytotoxicity. Of the 3,097 possible missense variants, we characterized the abundance of 2,922 variants and found 54 hotspot residues at which variants resulted in complete loss of protein stability. Analyzing 2,935 variants in the thiopurine cytotoxicity-based assay, we identified 17 additional residues where variants altered NUDT15 activity without affecting protein stability. We identified structural elements key to NUDT15 stability and/or catalytical activity with single amino acid resolution. Functional effects for NUDT15 variants accurately predicted toxicity risk alleles in patients treated with thiopurines with far superior sensitivity and specificity compared to bioinformatic prediction algorithms. In conclusion, our massively parallel variant function assays identified 1,152 deleterious NUDT15 variants, providing a comprehensive reference of variant function and vastly improving the ability to implement pharmacogenetics-guided thiopurine treatment individualization.


Assuntos
Antimetabólitos/administração & dosagem , Antimetabólitos/toxicidade , Mercaptopurina/administração & dosagem , Mercaptopurina/toxicidade , Variantes Farmacogenômicos , Pirofosfatases/genética , Alelos , Substituição de Aminoácidos , Relação Dose-Resposta a Droga , Determinação de Ponto Final , Estabilidade Enzimática , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Medicina de Precisão , Conformação Proteica em alfa-Hélice/genética , Pirofosfatases/química , Risco
6.
Biochemistry ; 61(2): 92-106, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34941255

RESUMO

Ribonucleotide reductase (RNR) is an essential enzyme with a complex mechanism of allosteric regulation found in nearly all living organisms. Class I RNRs are composed of two proteins, a large α-subunit (R1) and a smaller ß-subunit (R2) that exist as homodimers, that combine to form an active heterotetramer. Aquifex aeolicus is a hyperthermophilic bacterium with an unusual RNR encoding a 346-residue intein in the DNA sequence encoding its R2 subunit. We present the first structures of the A. aeolicus R1 and R2 (AaR1 and AaR2, respectively) proteins as well as the biophysical and biochemical characterization of active and inactive A. aeolicus RNR. While the active oligomeric state and activity regulation of A. aeolicus RNR are similar to those of other characterized RNRs, the X-ray crystal structures also reveal distinct features and adaptations. Specifically, AaR1 contains a ß-hairpin hook structure at the dimer interface, which has an interesting π-stacking interaction absent in other members of the NrdAh subclass, and its ATP cone houses two ATP molecules. We determined structures of two AaR2 proteins: one purified from a construct lacking the intein (AaR2) and a second purified from a construct including the intein sequence (AaR2_genomic). These structures in the context of metal content analysis and activity data indicate that AaR2_genomic displays much higher iron occupancy and activity compared to AaR2, suggesting that the intein is important for facilitating complete iron incorporation, particularly in the Fe2 site of the mature R2 protein, which may be important for the survival of A. aeolicus in low-oxygen environments.


Assuntos
Proteínas de Bactérias/química , Ribonucleotídeo Redutases/química , Regulação Alostérica , Aquifex/química , Aquifex/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ribonucleotídeo Redutases/metabolismo
7.
J Biol Chem ; 296: 100568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33753169

RESUMO

The enzyme NUDT15 efficiently hydrolyzes the active metabolites of thiopurine drugs, which are routinely used for treating cancer and inflammatory diseases. Loss-of-function variants in NUDT15 are strongly associated with thiopurine intolerance, such as leukopenia, and preemptive NUDT15 genotyping has been clinically implemented to personalize thiopurine dosing. However, understanding the molecular consequences of these variants has been difficult, as no structural information was available for NUDT15 proteins encoded by clinically actionable pharmacogenetic variants because of their inherent instability. Recently, the small molecule NUDT15 inhibitor TH1760 has been shown to sensitize cells to thiopurines, through enhanced accumulation of 6-thio-guanine in DNA. Building upon this, we herein report the development of the potent and specific NUDT15 inhibitor, TH7755. TH7755 demonstrates a greatly improved cellular target engagement and 6-thioguanine potentiation compared with TH1760, while showing no cytotoxicity on its own. This potent inhibitor also stabilized NUDT15, enabling analysis by X-ray crystallography. We have determined high-resolution structures of the clinically relevant NUDT15 variants Arg139Cys, Arg139His, Val18Ile, and V18_V19insGlyVal. These structures provide clear insights into the structural basis for the thiopurine intolerance phenotype observed in patients carrying these pharmacogenetic variants. These findings will aid in predicting the effects of new NUDT15 sequence variations yet to be discovered in the clinic.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Mutação , Pirofosfatases/antagonistas & inibidores , Pirofosfatases/genética , Tioguanina/química , Tioguanina/farmacologia , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Pirofosfatases/química
8.
J Am Chem Soc ; 144(31): 14258-14268, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35914774

RESUMO

Human PAICS is a bifunctional enzyme that is involved in the de novo purine biosynthesis, catalyzing the conversion of aminoimidazole ribonucleotide (AIR) into N-succinylcarboxamide-5-aminoimidazole ribonucleotide (SAICAR). It comprises two distinct active sites, AIR carboxylase (AIRc) where the AIR is initially converted to carboxyaminoimidazole ribonucleotide (CAIR) by reaction with CO2 and SAICAR synthetase (SAICARs) in which CAIR then reacts with an aspartate to form SAICAR, in an ATP-dependent reaction. Human PAICS is a promising target for the treatment of various types of cancer, and it is therefore of high interest to develop a detailed understanding of its reaction mechanism. In the present work, density functional theory calculations are employed to investigate the PAICS reaction mechanism. Starting from the available crystal structures, two large models of the AIRc and SAICARs active sites are built and different mechanistic proposals for the carboxylation and phosphorylation-condensation mechanisms are examined. For the carboxylation reaction, it is demonstrated that it takes place in a two-step mechanism, involving a C-C bond formation followed by a deprotonation of the formed tetrahedral intermediate (known as isoCAIR) assisted by an active site histidine residue. For the phosphorylation-condensation reaction, it is shown that the phosphorylation of CAIR takes place before the condensation reaction with the aspartate. It is further demonstrated that the three active site magnesium ions are involved in binding the substrates and stabilizing the transition states and intermediates of the reaction. The calculated barriers are in good agreement with available experimental data.


Assuntos
Ácido Aspártico , Ribonucleotídeos , Domínio Catalítico , Humanos , Ribonucleotídeos/química
9.
Nat Chem Biol ; 16(10): 1120-1128, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32690945

RESUMO

The NUDIX hydrolase NUDT15 was originally implicated in sanitizing oxidized nucleotides, but was later shown to hydrolyze the active thiopurine metabolites, 6-thio-(d)GTP, thereby dictating the clinical response of this standard-of-care treatment for leukemia and inflammatory diseases. Nonetheless, its physiological roles remain elusive. Here, we sought to develop small-molecule NUDT15 inhibitors to elucidate its biological functions and potentially to improve NUDT15-dependent chemotherapeutics. Lead compound TH1760 demonstrated low-nanomolar biochemical potency through direct and specific binding into the NUDT15 catalytic pocket and engaged cellular NUDT15 in the low-micromolar range. We also employed thiopurine potentiation as a proxy functional readout and demonstrated that TH1760 sensitized cells to 6-thioguanine through enhanced accumulation of 6-thio-(d)GTP in nucleic acids. A biochemically validated, inactive structural analog, TH7285, confirmed that increased thiopurine toxicity takes place via direct NUDT15 inhibition. In conclusion, TH1760 represents the first chemical probe for interrogating NUDT15 biology and potential therapeutic avenues.


Assuntos
Pirofosfatases/antagonistas & inibidores , Pirofosfatases/metabolismo , Sítios de Ligação , Linhagem Celular , Desenho de Fármacos , Desenvolvimento de Medicamentos , Escherichia coli , Humanos , Pirofosfatase Inorgânica/antagonistas & inibidores , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Pirofosfatases/química , Pirofosfatases/genética , Relação Estrutura-Atividade
10.
Nucleic Acids Res ; 48(21): 12234-12251, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33211885

RESUMO

Altered oncogene expression in cancer cells causes loss of redox homeostasis resulting in oxidative DNA damage, e.g. 8-oxoguanine (8-oxoG), repaired by base excision repair (BER). PARP1 coordinates BER and relies on the upstream 8-oxoguanine-DNA glycosylase (OGG1) to recognise and excise 8-oxoG. Here we hypothesize that OGG1 may represent an attractive target to exploit reactive oxygen species (ROS) elevation in cancer. Although OGG1 depletion is well tolerated in non-transformed cells, we report here that OGG1 depletion obstructs A3 T-cell lymphoblastic acute leukemia growth in vitro and in vivo, validating OGG1 as a potential anti-cancer target. In line with this hypothesis, we show that OGG1 inhibitors (OGG1i) target a wide range of cancer cells, with a favourable therapeutic index compared to non-transformed cells. Mechanistically, OGG1i and shRNA depletion cause S-phase DNA damage, replication stress and proliferation arrest or cell death, representing a novel mechanistic approach to target cancer. This study adds OGG1 to the list of BER factors, e.g. PARP1, as potential targets for cancer treatment.


Assuntos
Neoplasias do Colo/tratamento farmacológico , DNA Glicosilases/genética , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Poli(ADP-Ribose) Polimerase-1/imunologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/mortalidade , Dano ao DNA , DNA Glicosilases/antagonistas & inibidores , DNA Glicosilases/metabolismo , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA de Neoplasias/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Guanina/análogos & derivados , Guanina/metabolismo , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Biol Chem ; 295(33): 11656-11668, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32571877

RESUMO

The bifunctional human enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) catalyzes two essential steps in the de novo purine biosynthesis pathway. PAICS is overexpressed in many cancers and could be a promising target for the development of cancer therapeutics. Here, using gene knockdowns and clonogenic survival and cell viability assays, we demonstrate that PAICS is required for growth and survival of prostate cancer cells. PAICS catalyzes the carboxylation of aminoimidazole ribonucleotide (AIR) and the subsequent conversion of carboxyaminoimidazole ribonucleotide (CAIR) and l-aspartate to N-succinylcarboxamide-5-aminoimidazole ribonucleotide (SAICAR). Of note, we present the first structures of human octameric PAICS in complexes with native ligands. In particular, we report the structure of PAICS with CAIR bound in the active sites of both domains and SAICAR bound in one of the SAICAR synthetase domains. Moreover, we report the PAICS structure with SAICAR and an ATP analog occupying the SAICAR synthetase active site. These structures provide insight into substrate and product binding and the architecture of the active sites, disclosing important structural information for rational design of PAICS inhibitors as potential anticancer drugs.


Assuntos
Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/química , Aminoimidazol Carboxamida/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Cristalografia por Raios X , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Peptídeo Sintases/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Conformação Proteica , Ribonucleosídeos/química , Ribonucleosídeos/metabolismo , Ribonucleotídeos/química , Ribonucleotídeos/metabolismo
12.
J Biol Chem ; 295(15): 4761-4772, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32144205

RESUMO

MutT homologue 1 (MTH1) removes oxidized nucleotides from the nucleotide pool and thereby prevents their incorporation into the genome and thereby reduces genotoxicity. We previously reported that MTH1 is an efficient catalyst of O6-methyl-dGTP hydrolysis suggesting that MTH1 may also sanitize the nucleotide pool from other methylated nucleotides. We here show that MTH1 efficiently catalyzes the hydrolysis of N6-methyl-dATP to N6-methyl-dAMP and further report that N6-methylation of dATP drastically increases the MTH1 activity. We also observed MTH1 activity with N6-methyl-ATP, albeit at a lower level. We show that N6-methyl-dATP is incorporated into DNA in vivo, as indicated by increased N6-methyl-dA DNA levels in embryos developed from MTH1 knock-out zebrafish eggs microinjected with N6-methyl-dATP compared with noninjected embryos. N6-methyl-dATP activity is present in MTH1 homologues from distantly related vertebrates, suggesting evolutionary conservation and indicating that this activity is important. Of note, N6-methyl-dATP activity is unique to MTH1 among related NUDIX hydrolases. Moreover, we present the structure of N6-methyl-dAMP-bound human MTH1, revealing that the N6-methyl group is accommodated within a hydrophobic active-site subpocket explaining why N6-methyl-dATP is a good MTH1 substrate. N6-methylation of DNA and RNA has been reported to have epigenetic roles and to affect mRNA metabolism. We propose that MTH1 acts in concert with adenosine deaminase-like protein isoform 1 (ADAL1) to prevent incorporation of N6-methyl-(d)ATP into DNA and RNA. This would hinder potential dysregulation of epigenetic control and RNA metabolism via conversion of N6-methyl-(d)ATP to N6-methyl-(d)AMP, followed by ADAL1-catalyzed deamination producing (d)IMP that can enter the nucleotide salvage pathway.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Nucleotídeos de Desoxiadenina/química , Nucleotídeos de Desoxiadenina/metabolismo , Desoxirribonucleotídeos/metabolismo , Evolução Molecular , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Domínio Catalítico , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Embrião não Mamífero/metabolismo , Humanos , Hidrólise , Cinética , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Pirofosfatases/genética , Pirofosfatases/metabolismo , Especificidade por Substrato , Peixe-Zebra , Nudix Hidrolases
13.
J Biol Chem ; 295(46): 15576-15587, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32883811

RESUMO

Ribonucleotide reductase (RNR) is a central enzyme for the synthesis of DNA building blocks. Most aerobic organisms, including nearly all eukaryotes, have class I RNRs consisting of R1 and R2 subunits. The catalytic R1 subunit contains an overall activity site that can allosterically turn the enzyme on or off by the binding of ATP or dATP, respectively. The mechanism behind the ability to turn the enzyme off via the R1 subunit involves the formation of different types of R1 oligomers in most studied species and R1-R2 octamers in Escherichia coli To better understand the distribution of different oligomerization mechanisms, we characterized the enzyme from Clostridium botulinum, which belongs to a subclass of class I RNRs not studied before. The recombinantly expressed enzyme was analyzed by size-exclusion chromatography, gas-phase electrophoretic mobility macromolecular analysis, EM, X-ray crystallography, and enzyme assays. Interestingly, it shares the ability of the E. coli RNR to form inhibited R1-R2 octamers in the presence of dATP but, unlike the E. coli enzyme, cannot be turned off by combinations of ATP and dGTP/dTTP. A phylogenetic analysis of class I RNRs suggests that activity regulation is not ancestral but was gained after the first subclasses diverged and that RNR subclasses with inhibition mechanisms involving R1 oligomerization belong to a clade separated from the two subclasses forming R1-R2 octamers. These results give further insight into activity regulation in class I RNRs as an evolutionarily dynamic process.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium botulinum/enzimologia , Ribonucleotídeo Redutases/metabolismo , Proteínas de Bactérias/classificação , Domínio Catalítico , Cristalografia por Raios X , Nucleotídeos de Desoxiadenina/química , Dimerização , Escherichia coli/metabolismo , Filogenia , Estrutura Quaternária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ribonucleotídeo Redutases/classificação
14.
Handb Exp Pharmacol ; 263: 11-33, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31792680

RESUMO

Botulinum neurotoxins (BoNTs) are a family of bacterial protein toxins produced by various Clostridium species. They are traditionally classified into seven major serotypes (BoNT/A-G). Recent progress in sequencing microbial genomes has led to an ever-growing number of subtypes, chimeric toxins, BoNT-like toxins, and remotely related BoNT homologs, constituting an expanding BoNT superfamily. Recent structural studies of BoNTs, BoNT progenitor toxin complexes, tetanus neurotoxin (TeNT), toxin-receptor complexes, and toxin-substrate complexes have provided mechanistic understandings of toxin functions and the molecular basis for their variations. The growing BoNT superfamily of toxins present a natural repertoire that can be explored to develop novel therapeutic toxins, and the structural understanding of their variations provides a knowledge basis for engineering toxins to improve therapeutic efficacy and expand their clinical applications.


Assuntos
Toxinas Botulínicas , Proteínas de Bactérias , Humanos
15.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361086

RESUMO

The botulinum neurotoxins are potent molecules that are not only responsible for the lethal paralytic disease botulism, but have also been harnessed for therapeutic uses in the treatment of an increasing number of chronic neurological and neuromuscular disorders, in addition to cosmetic applications. The toxins act at the cholinergic nerve terminals thanks to an efficient and specific mechanism of cell recognition which is based on a dual receptor system that involves gangliosides and protein receptors. Binding to surface-anchored gangliosides is the first essential step in this process. Here, we determined the X-ray crystal structure of the binding domain of BoNT/E, a toxin of clinical interest, in complex with its GD1a oligosaccharide receptor. Beyond confirmation of the conserved ganglioside binding site, we identified key interacting residues that are unique to BoNT/E and a significant rearrangement of loop 1228-1237 upon carbohydrate binding. These observations were also supported by thermodynamic measurements of the binding reaction and assessment of ganglioside selectivity by immobilised-receptor binding assays. These results provide a structural basis to understand the specificity of BoNT/E for complex gangliosides.


Assuntos
Toxinas Botulínicas/química , Toxinas Botulínicas/metabolismo , Gangliosídeos/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos
16.
Biochemistry ; 59(4): 491-498, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31809018

RESUMO

Botulinum neurotoxins (BoNTs) are exceptionally toxic proteins that cause paralysis but are also extensively used as treatment for various medical conditions. Most BoNTs bind two receptors on neuronal cells, namely, a ganglioside and a protein receptor. Differences in the sequence between the protein receptors from different species can impact the binding affinity and toxicity of the BoNTs. Here we have investigated how BoNT/B, /DC, and /G, all three toxins that utilize synaptotagmin I and II (Syt-I and Syt-II, respectively) as their protein receptors, bind to Syt-I and -II of mouse/rat, bovine, and human origin by isothermal titration calorimetry analysis. BoNT/G had the highest affinity for human Syt-I, and BoNT/DC had the highest affinity for bovine Syt-II. As expected, BoNT/B, /DC, and /G showed very low levels of binding to human Syt-II. Furthermore, we carried out saturation transfer difference (STD) and STD-TOCSY NMR experiments that revealed the region of the Syt peptide in direct contact with BoNT/G, which demonstrate that BoNT/G recognizes the Syt peptide in a model similar to that in the established BoNT/B-Syt-II complex. Our analyses also revealed that regions outside the Syt peptide's toxin-binding region are important for the helicity of the peptide and, therefore, the binding affinity.


Assuntos
Toxinas Botulínicas/química , Sinaptotagminas/química , Sinaptotagminas/metabolismo , Sinaptotagminas/ultraestrutura , Animais , Sítios de Ligação , Fenômenos Biofísicos , Toxinas Botulínicas/metabolismo , Toxinas Botulínicas/ultraestrutura , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/metabolismo , Bovinos , Cristalografia por Raios X , Gangliosídeos/metabolismo , Humanos , Camundongos , Modelos Moleculares , Neurônios/metabolismo , Neurotoxinas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Ratos
17.
J Biol Chem ; 294(45): 16663-16671, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31537648

RESUMO

Assembly of the mitochondrial respiratory chain requires the coordinated synthesis of mitochondrial and nuclear encoded subunits, redox co-factor acquisition, and correct joining of the subunits to form functional complexes. The conserved Cbp3-Cbp6 chaperone complex binds newly synthesized cytochrome b and supports the ordered acquisition of the heme co-factors. Moreover, it functions as a translational activator by interacting with the mitoribosome. Cbp3 consists of two distinct domains: an N-terminal domain present in mitochondrial Cbp3 homologs and a highly conserved C-terminal domain comprising a ubiquinol-cytochrome c chaperone region. Here, we solved the crystal structure of this C-terminal domain from a bacterial homolog at 1.4 Å resolution, revealing a unique all-helical fold. This structure allowed mapping of the interaction sites of yeast Cbp3 with Cbp6 and cytochrome b via site-specific photo-cross-linking. We propose that mitochondrial Cbp3 homologs carry an N-terminal extension that positions the conserved C-terminal domain at the ribosomal tunnel exit for an efficient interaction with its substrate, the newly synthesized cytochrome b protein.


Assuntos
Citocromos b/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brucella abortus/metabolismo , Cristalografia por Raios X , Citocromos b/química , Citocromos b/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
18.
Nucleic Acids Res ; 46(20): 10888-10904, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30304478

RESUMO

Nucleotides in the free pool are more susceptible to nonenzymatic methylation than those protected in the DNA double helix. Methylated nucleotides like O6-methyl-dGTP can be mutagenic and toxic if incorporated into DNA. Removal of methylated nucleotides from the nucleotide pool may therefore be important to maintain genome integrity. We show that MutT homologue 1 (MTH1) efficiently catalyzes the hydrolysis of O6-methyl-dGTP with a catalytic efficiency similar to that for 8-oxo-dGTP. O6-methyl-dGTP activity is exclusive to MTH1 among human NUDIX proteins and conserved through evolution but not found in bacterial MutT. We present a high resolution crystal structure of human and zebrafish MTH1 in complex with O6-methyl-dGMP. By microinjecting fertilized zebrafish eggs with O6-methyl-dGTP and inhibiting MTH1 we demonstrate that survival is dependent on active MTH1 in vivo. O6-methyl-dG levels are higher in DNA extracted from zebrafish embryos microinjected with O6-methyl-dGTP and inhibition of O6-methylguanine-DNA methyl transferase (MGMT) increases the toxicity of O6-methyl-dGTP demonstrating that O6-methyl-dGTP is incorporated into DNA. MTH1 deficiency sensitizes human cells to the alkylating agent Temozolomide, a sensitization that is more pronounced upon MGMT inhibition. These results expand the cellular MTH1 function and suggests MTH1 also is important for removal of methylated nucleotides from the nucleotide pool.


Assuntos
Enzimas Reparadoras do DNA/fisiologia , Nucleotídeos de Desoxiguanina/química , Monoéster Fosfórico Hidrolases/fisiologia , Animais , Domínio Catalítico , Cristalografia por Raios X , Metilases de Modificação do DNA/química , Enzimas Reparadoras do DNA/química , Cães , Escherichia coli/genética , Células HL-60 , Humanos , Hidrólise , Cinética , Camundongos , Nucleotídeos , Monoéster Fosfórico Hidrolases/química , Pirofosfatases/química , Especificidade da Espécie , Suínos , Temozolomida/farmacologia , Proteínas Supressoras de Tumor/química , Peixe-Zebra
19.
Biochemistry ; 58(7): 887-899, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30614695

RESUMO

Arabidopsis thaliana NUDT1 (AtNUDT1) belongs to the Nudix family of proteins, which have a diverse range of substrates, including oxidized nucleotides such as 8-oxo-dGTP. The hydrolysis of oxidized dNTPs is highly important as it prevents their incorporation into DNA, thus preventing mutations and DNA damage. AtNUDT1 is the sole Nudix enzyme from A. thaliana shown to have activity against 8-oxo-dGTP. We present the structure of AtNUDT1 in complex with 8-oxo-dGTP. Structural comparison with bacterial and human homologues reveals a conserved overall fold. Analysis of the 8-oxo-dGTP binding mode shows that the residues Asn76 and Ser89 interact with the O8 atom of the substrate, a feature not observed in structures of protein homologues solved to date. Kinetic analysis of wild-type and mutant AtNUDT1 confirmed that these active site residues influence 8-oxo-dGTP hydrolysis. A recent study showed that AtNUDT1 is also able to hydrolyze terpene compounds. The diversity of reactions catalyzed by AtNUDT1 suggests that this Nudix enzyme from higher plants has evolved in a manner distinct to those from other organisms.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Nucleotídeos de Desoxiguanina/metabolismo , Pirofosfatases/química , Pirofosfatases/metabolismo , Proteínas de Arabidopsis/genética , Domínio Catalítico , Cristalografia por Raios X , Nucleotídeos de Desoxiguanina/química , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Mutação , Conformação Proteica , Pirofosfatases/genética , Especificidade por Substrato , Terpenos/química , Terpenos/metabolismo
20.
EMBO Rep ; 18(8): 1306-1317, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28645943

RESUMO

The tetanus neurotoxin (TeNT) is a highly potent toxin produced by Clostridium tetani that inhibits neurotransmission of inhibitory interneurons, causing spastic paralysis in the tetanus disease. TeNT differs from the other clostridial neurotoxins by its unique ability to target the central nervous system by retrograde axonal transport. The crystal structure of the tetanus toxin reveals a "closed" domain arrangement stabilised by two disulphide bridges, and the molecular details of the toxin's interaction with its polysaccharide receptor. An integrative analysis combining X-ray crystallography, solution scattering and single particle electron cryo-microscopy reveals pH-mediated domain rearrangements that may give TeNT the ability to adapt to the multiple environments encountered during intoxication, and facilitate binding to distinct receptors.


Assuntos
Toxina Tetânica/química , Toxina Tetânica/metabolismo , Animais , Cristalografia por Raios X , Humanos , Concentração de Íons de Hidrogênio , Metaloendopeptidases/química , Metaloendopeptidases/metabolismo , Microscopia Eletrônica , Neurotoxinas/química , Neurotoxinas/metabolismo , Ligação Proteica , Domínios Proteicos , Transmissão Sináptica/efeitos dos fármacos , Toxina Tetânica/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa