Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 104(2): 533-587, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37561137

RESUMO

Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.


Assuntos
Pulmão , Insuficiência de Múltiplos Órgãos , Humanos , Insuficiência de Múltiplos Órgãos/metabolismo , Pulmão/metabolismo , Endotélio Vascular/metabolismo , Amiloide/química , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo
2.
Circulation ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873770

RESUMO

BACKGROUND: Endothelial cell (EC) apoptosis and proliferation of apoptosis-resistant cells is a hallmark of pulmonary hypertension (PH). Yet, why some ECs die and others proliferate and how this contributes to vascular remodeling is unclear. We hypothesized that this differential response may: (1) relate to different EC subsets, namely pulmonary artery (PAECs) versus microvascular ECs (MVECs); (2) be attributable to autophagic activation in both EC subtypes; and (3) cause replacement of MVECs by PAECs with subsequent distal vessel muscularization. METHODS: EC subset responses to chronic hypoxia were assessed by single-cell RNA sequencing of murine lungs. Proliferative versus apoptotic responses, activation, and role of autophagy were assessed in human and rat PAECs and MVECs, and in precision-cut lung slices of wild-type mice or mice with endothelial deficiency in the autophagy gene Atg7 (Atg7EN-KO). Abundance of PAECs versus MVECs in precapillary microvessels was assessed in lung tissue from patients with PH and animal models on the basis of structural or surface markers. RESULTS: In vitro and in vivo, PAECs proliferated in response to hypoxia, whereas MVECs underwent apoptosis. Single-cell RNA sequencing analyses support these findings in that hypoxia induced an antiapoptotic, proliferative phenotype in arterial ECs, whereas capillary ECs showed a propensity for cell death. These distinct responses were prevented in hypoxic Atg7EN-KO mice or after ATG7 silencing, yet replicated by autophagy stimulation. In lung tissue from mice, rats, or patients with PH, the abundance of PAECs in precapillary arterioles was increased, and that of MVECs reduced relative to controls, indicating replacement of microvascular by macrovascular ECs. EC replacement was prevented by genetic or pharmacological inhibition of autophagy in vivo. Conditioned medium from hypoxic PAECs yet not MVECs promoted pulmonary artery smooth muscle cell proliferation and migration in a platelet-derived growth factor-dependent manner. Autophagy inhibition attenuated PH development and distal vessel muscularization in preclinical models. CONCLUSIONS: Autophagic activation by hypoxia induces in parallel PAEC proliferation and MVEC apoptosis. These differential responses cause a progressive replacement of MVECs by PAECs in precapillary pulmonary arterioles, thus providing a macrovascular context that in turn promotes pulmonary artery smooth muscle cell proliferation and migration, ultimately driving distal vessel muscularization and the development of PH.

3.
Am J Respir Crit Care Med ; 209(11): 1304-1313, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477657

RESUMO

Acute respiratory distress syndrome (ARDS) is associated with long-term impairments in brain and muscle function that significantly impact the quality of life of those who survive the acute illness. The mechanisms underlying these impairments are not yet well understood, and evidence-based interventions to minimize the burden on patients remain unproved. The NHLBI of the NIH assembled a workshop in April 2023 to review the state of the science regarding ARDS-associated brain and muscle dysfunction, to identify gaps in current knowledge, and to determine priorities for future investigation. The workshop included presentations by scientific leaders across the translational science spectrum and was open to the public as well as the scientific community. This report describes the themes discussed at the workshop as well as recommendations to advance the field toward the goal of improving the health and well-being of ARDS survivors.


Assuntos
Síndrome do Desconforto Respiratório , Sobreviventes , Humanos , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/fisiopatologia , Estados Unidos , National Heart, Lung, and Blood Institute (U.S.) , Qualidade de Vida , Encéfalo/fisiopatologia
4.
FASEB J ; 37(7): e23042, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37358817

RESUMO

Patients who recover from hospital-acquired pneumonia exhibit a high incidence of end-organ dysfunction following hospital discharge, including cognitive deficits. We have previously demonstrated that pneumonia induces the production and release of cytotoxic oligomeric tau from pulmonary endothelial cells, and these tau oligomers can enter the circulation and may be a cause of long-term morbidities. Endothelial-derived oligomeric tau is hyperphosphorylated during infection. The purpose of these studies was to determine whether Ser-214 phosphorylation of tau is a necessary stimulus for generation of cytotoxic tau variants. The results of these studies demonstrate that Ser-214 phosphorylation is critical for the cytotoxic properties of infection-induced oligomeric tau. In the lung, Ser-214 phosphorylated tau contributes to disruption of the alveolar-capillary barrier, resulting in increased permeability. However, in the brain, both the Ser-214 phosphorylated tau and the mutant Ser-214-Ala tau, which cannot be phosphorylated, disrupted hippocampal long-term potentiation suggesting that inhibition of long-term potentiation was relatively insensitive to the phosphorylation status of Ser-214. Nonetheless, phosphorylation of tau is essential to its cytotoxicity since global dephosphorylation of the infection-induced cytotoxic tau variants rescued long-term potentiation. Collectively, these data demonstrate that multiple forms of oligomeric tau are generated during infectious pneumonia, with different forms of oligomeric tau being responsible for dysfunction of distinct end-organs during pneumonia.


Assuntos
Antineoplásicos , Pneumonia , Humanos , Fosforilação , Proteínas tau/genética , Proteínas tau/metabolismo , Células Endoteliais/metabolismo , Pulmão/metabolismo
5.
Am J Respir Cell Mol Biol ; 69(3): 340-354, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37201952

RESUMO

Pulmonary microvascular endothelial cells contribute to the integrity of the lung gas exchange interface, and they are highly glycolytic. Although glucose and fructose represent discrete substrates available for glycolysis, pulmonary microvascular endothelial cells prefer glucose over fructose, and the mechanisms involved in this selection are unknown. 6-Phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3) is an important glycolytic enzyme that drives glycolytic flux against negative feedback and links glycolytic and fructolytic pathways. We hypothesized that PFKFB3 inhibits fructose metabolism in pulmonary microvascular endothelial cells. We found that PFKFB3 knockout cells survive better than wild-type cells in fructose-rich medium under hypoxia. Seahorse assays, lactate and glucose measurements, and stable isotope tracing showed that PFKFB3 inhibits fructose-hexokinase-mediated glycolysis and oxidative phosphorylation. Microarray analysis revealed that fructose upregulates PFKFB3, and PFKFB3 knockout cells increase fructose-specific GLUT5 (glucose transporter 5) expression. Using conditional endothelial-specific PFKFB3 knockout mice, we demonstrated that endothelial PFKFB3 knockout increases lung tissue lactate production after fructose gavage. Last, we showed that pneumonia increases fructose in BAL fluid in mechanically ventilated ICU patients. Thus, PFKFB3 knockout increases GLUT5 expression and the hexokinase-mediated fructose use in pulmonary microvascular endothelial cells that promotes their survival. Our findings indicate that PFKFB3 is a molecular switch that controls glucose versus fructose use in glycolysis and help better understand lung endothelial cell metabolism during respiratory failure.


Assuntos
Células Endoteliais , Frutose , Hexoquinase , Animais , Camundongos , Células Endoteliais/metabolismo , Glucose/metabolismo , Lactatos , Pulmão/metabolismo , Frutose/metabolismo
6.
J Biol Chem ; 298(1): 101482, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896150

RESUMO

Patients who recover from nosocomial pneumonia oftentimes exhibit long-lasting cognitive impairment comparable with what is observed in Alzheimer's disease patients. We previously hypothesized that the lung endothelium contributes to infection-related neurocognitive dysfunction, because bacteria-exposed endothelial cells release a form(s) of cytotoxic tau that is sufficient to impair long-term potentiation in the hippocampus. However, the full-length lung and endothelial tau isoform(s) have yet to be resolved and it remains unclear whether the infection-induced endothelial cytotoxic tau triggers neuronal tau aggregation. Here, we demonstrate that lung endothelial cells express a big tau isoform and three additional tau isoforms that are similar to neuronal tau, each containing four microtubule-binding repeat domains, and that tau is expressed in lung capillaries in vivo. To test whether infection elicits endothelial tau capable of causing transmissible tau aggregation, the cells were infected with Pseudomonas aeruginosa. The infection-induced tau released from endothelium into the medium-induced neuronal tau aggregation in reporter cells, including reporter cells that express either the four microtubule-binding repeat domains or the full-length tau. Infection-induced release of pathological tau variant(s) from endothelium, and the ability of the endothelial-derived tau to cause neuronal tau aggregation, was abolished in tau knockout cells. After bacterial lung infection, brain homogenates from WT mice, but not from tau knockout mice, initiated tau aggregation. Thus, we conclude that bacterial pneumonia initiates the release of lung endothelial-derived cytotoxic tau, which is capable of propagating a neuronal tauopathy.


Assuntos
Pneumopatias , Pneumonia Bacteriana , Tauopatias , Proteínas tau , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/microbiologia , Disfunção Cognitiva/patologia , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Células Endoteliais/patologia , Humanos , Pulmão/irrigação sanguínea , Pneumopatias/metabolismo , Pneumopatias/microbiologia , Pneumopatias/patologia , Camundongos , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Isoformas de Proteínas , Pseudomonas aeruginosa , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo
7.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L174-L189, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37366533

RESUMO

Pneumonia elicits the production of cytotoxic beta amyloid (Aß) that contributes to end-organ dysfunction, yet the mechanism(s) linking infection to activation of the amyloidogenic pathway that produces cytotoxic Aß is unknown. Here, we tested the hypothesis that gamma-secretase activating protein (GSAP), which contributes to the amyloidogenic pathway in the brain, promotes end-organ dysfunction following bacterial pneumonia. First-in-kind Gsap knockout rats were generated. Wild-type and knockout rats possessed similar body weights, organ weights, circulating blood cell counts, arterial blood gases, and cardiac indices at baseline. Intratracheal Pseudomonas aeruginosa infection caused acute lung injury and a hyperdynamic circulatory state. Whereas infection led to arterial hypoxemia in wild-type rats, the alveolar-capillary barrier integrity was preserved in Gsap knockout rats. Infection potentiated myocardial infarction following ischemia-reperfusion injury, and this potentiation was abolished in knockout rats. In the hippocampus, GSAP contributed to both pre- and postsynaptic neurotransmission, increasing the presynaptic action potential recruitment, decreasing neurotransmitter release probability, decreasing the postsynaptic response, and preventing postsynaptic hyperexcitability, resulting in greater early long-term potentiation but reduced late long-term potentiation. Infection abolished early and late long-term potentiation in wild-type rats, whereas the late long-term potentiation was partially preserved in Gsap knockout rats. Furthermore, hippocampi from knockout rats, and both the wild-type and knockout rats following infection, exhibited a GSAP-dependent increase in neurotransmitter release probability and postsynaptic hyperexcitability. These results elucidate an unappreciated role for GSAP in innate immunity and highlight the contribution of GSAP to end-organ dysfunction during infection.NEW & NOTEWORTHY Pneumonia is a common cause of end-organ dysfunction, both during and in the aftermath of infection. In particular, pneumonia is a common cause of lung injury, increased risk of myocardial infarction, and neurocognitive dysfunction, although the mechanisms responsible for such increased risk are unknown. Here, we reveal that gamma-secretase activating protein, which contributes to the amyloidogenic pathway, is important for end-organ dysfunction following infection.


Assuntos
Doença de Alzheimer , Pneumonia Bacteriana , Ratos , Animais , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Insuficiência de Múltiplos Órgãos , Peptídeos beta-Amiloides/metabolismo , Neurotransmissores
8.
Am J Respir Cell Mol Biol ; 67(3): 284-308, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35679511

RESUMO

Clinical and molecular heterogeneity are common features of human disease. Understanding the basis for heterogeneity has led to major advances in therapy for many cancers and pulmonary diseases such as cystic fibrosis and asthma. Although heterogeneity of risk factors, disease severity, and outcomes in survivors are common features of the acute respiratory distress syndrome (ARDS), many challenges exist in understanding the clinical and molecular basis for disease heterogeneity and using heterogeneity to tailor therapy for individual patients. This report summarizes the proceedings of the 2021 Aspen Lung Conference, which was organized to review key issues related to understanding clinical and molecular heterogeneity in ARDS. The goals were to review new information about ARDS phenotypes, to explore multicellular and multisystem mechanisms responsible for heterogeneity, and to review how best to account for clinical and molecular heterogeneity in clinical trial design and assessment of outcomes. The report concludes with recommendations for future research to understand the clinical and basic mechanisms underlying heterogeneity in ARDS to advance the development of new treatments for this life-threatening critical illness.


Assuntos
Síndrome do Desconforto Respiratório , Humanos , Pulmão , Fatores de Risco , Índice de Gravidade de Doença , Tórax
9.
Am J Physiol Cell Physiol ; 323(3): C936-C949, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35912996

RESUMO

The pulmonary artery endothelium forms a semipermeable barrier that limits macromolecular flux through intercellular junctions. This barrier is maintained by an intrinsic forward protrusion of the interacting membranes between adjacent cells. However, the dynamic interactions of these membranes have been incompletely quantified. Here, we present a novel technique to quantify the motion of the peripheral membrane of the cells, called paracellular morphological fluctuations (PMFs), and to assess the impact of substrate stiffness on PMFs. Substrate stiffness impacted large-length scale morphological changes such as cell size and motion. Cell size was larger on stiffer substrates, whereas the speed of cell movement was decreased on hydrogels with stiffness either larger or smaller than 1.25 kPa, consistent with cells approaching a jammed state. Pulmonary artery endothelial cells moved fastest on 1.25 kPa hydrogel, a stiffness consistent with a healthy pulmonary artery. Unlike these large-length scale morphological changes, the baseline of PMFs was largely insensitive to the substrate stiffness on which the cells were cultured. Activation of store-operated calcium channels using thapsigargin treatment triggered a transient increase in PMFs beyond the control treatment. However, in hypocalcemic conditions, such an increase in PMFs was absent on 1.25 kPa hydrogel but was present on 30 kPa hydrogel-a stiffness consistent with that of a hypertensive pulmonary artery. These findings indicate that 1) PMFs occur in cultured endothelial cell clusters, irrespective of the substrate stiffness; 2) PMFs increase in response to calcium influx through store-operated calcium entry channels; and 3) stiffer substrate promotes PMFs through a mechanism that does not require calcium influx.


Assuntos
Cálcio , Células Endoteliais , Cálcio/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Hidrogéis/metabolismo , Pulmão/metabolismo
10.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L48-L57, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35672011

RESUMO

The lungs of patients with acute respiratory distress syndrome (ARDS) have hyperpermeable capillaries that must undergo repair in an acidic microenvironment. Pulmonary microvascular endothelial cells (PMVECs) have an acid-resistant phenotype, in part due to carbonic anhydrase IX (CA IX). CA IX also facilitates PMVEC repair by promoting aerobic glycolysis, migration, and network formation. Molecular mechanisms of how CA IX performs such a wide range of functions are unknown. CA IX is composed of four domains known as the proteoglycan-like (PG), catalytic (CA), transmembrane (TM), and intracellular (IC) domains. We hypothesized that the PG and CA domains mediate PMVEC pH homeostasis and repair, and the IC domain regulates aerobic glycolysis and PI3k/Akt signaling. The functions of each CA IX domain were investigated using PMVEC cell lines that express either a full-length CA IX protein or a CA IX protein harboring a domain deletion. We found that the PG domain promotes intracellular pH homeostasis, migration, and network formation. The CA and IC domains mediate Akt activation but negatively regulate aerobic glycolysis. The IC domain also supports migration while inhibiting network formation. Finally, we show that exposure to acidosis suppresses aerobic glycolysis and migration, even though intracellular pH is maintained in PMVECs. Thus, we report that 1) the PG and IC domains mediate PMVEC migration and network formation, 2) the CA and IC domains support PI3K/Akt signaling, and 3) acidosis impairs PMVEC metabolism and migration independent of intracellular pH homeostasis.


Assuntos
Antígenos de Neoplasias , Anidrase Carbônica IX , Células Endoteliais , Pulmão , Acidose/metabolismo , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Células Endoteliais/citologia , Células Endoteliais/enzimologia , Humanos , Concentração de Íons de Hidrogênio , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteoglicanas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Microambiente Tumoral
11.
FASEB J ; 35(9): e21807, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34384141

RESUMO

Pneumonia causes short- and long-term cognitive dysfunction in a high proportion of patients, although the mechanism(s) responsible for this effect are unknown. Here, we tested the hypothesis that pneumonia-elicited cytotoxic amyloid and tau variants: (1) are present in the circulation during infection; (2) lead to impairment of long-term potentiation; and, (3) inhibit long-term potentiation dependent upon tau. Cytotoxic amyloid and tau species were recovered from the blood and the hippocampus following pneumonia, and they were present in the extracorporeal membrane oxygenation oxygenators of patients with pneumonia, especially in those who died. Introduction of immunopurified blood-borne amyloid and tau into either the airways or the blood of uninfected animals acutely and chronically impaired hippocampal information processing. In contrast, the infection did not impair long-term potentiation in tau knockout mice and the amyloid- and tau-dependent disruption in hippocampal signaling was less severe in tau knockout mice. Moreover, the infection did not elicit cytotoxic amyloid and tau variants in tau knockout mice. Therefore, pneumonia initiates a tauopathy that contributes to cognitive dysfunction.


Assuntos
Pneumonia/complicações , Tauopatias/etiologia , Adulto , Idoso , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Animais , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Pneumonia/metabolismo , Ratos , Tauopatias/metabolismo , Adulto Jovem , Proteínas tau/metabolismo
12.
Am J Respir Cell Mol Biol ; 65(6): 630-645, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34251286

RESUMO

Low tidal volume ventilation protects the lung in mechanically ventilated patients. The impact of the accompanying permissive hypoxemia and hypercapnia on endothelial cell recovery from injury is poorly understood. CA (carbonic anhydrase) IX is expressed in pulmonary microvascular endothelial cells (PMVECs), where it contributes to CO2 and pH homeostasis, bioenergetics, and angiogenesis. We hypothesized that CA IX is important for PMVEC survival and that CA IX expression and release from PMVECs are increased during infection. Although the plasma concentration of CA IX was unchanged in human and rat pneumonia, there was a trend toward increasing CA IX in the bronchoalveolar fluid of mechanically ventilated critically ill patients with pneumonia and a significant increase in CA IX in the lung tissue lysates of pneumonia rats. To investigate the functional implications of the lung CA IX increase, we generated PMVEC cell lines harboring domain-specific CA IX mutations. By using these cells, we found that infection promotes intracellular (IC) expression, release, and MMP (metalloproteinase)-mediated extracellular cleavage of CA IX in PMVECs. IC domain deletion uniquely impaired CA IX membrane localization. Loss of the CA IX IC domain promoted cell death after infection, suggesting that the IC domain has an important role in PMVEC survival. We also found that hypoxia improves survival, whereas hypercapnia reverses the protective effect of hypoxia, during infection. Thus, we report 1) that CA IX increases in the lungs of pneumonia rats and 2) that the CA IX IC domain and hypoxia promote PMVEC survival during infection.


Assuntos
Anidrase Carbônica IX/metabolismo , Células Endoteliais/enzimologia , Pulmão/enzimologia , Pneumonia Bacteriana/enzimologia , Infecções por Pseudomonas/enzimologia , Pseudomonas aeruginosa/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Hipóxia Celular , Humanos , Masculino , Ratos , Ratos Endogâmicos F344
13.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L358-L376, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34159794

RESUMO

Capillary endothelial cells possess a specialized metabolism necessary to adapt to the unique alveolar-capillary environment. Here, we highlight how endothelial metabolism preserves the integrity of the pulmonary circulation by controlling vascular permeability, defending against oxidative stress, facilitating rapid migration and angiogenesis in response to injury, and regulating the epigenetic landscape of endothelial cells. Recent reports on single-cell RNA-sequencing reveal subpopulations of pulmonary capillary endothelial cells with distinctive reparative capacities, which potentially offer new insight into their metabolic signature. Lastly, we discuss broad implications of pulmonary vascular metabolism on acute respiratory distress syndrome, touching on emerging findings of endotheliitis in coronavirus disease 2019 (COVID-19) lungs.


Assuntos
COVID-19/complicações , Endotélio Vascular/metabolismo , Neovascularização Patológica/patologia , Circulação Pulmonar , Síndrome do Desconforto Respiratório/epidemiologia , SARS-CoV-2/isolamento & purificação , COVID-19/transmissão , COVID-19/virologia , Endotélio Vascular/patologia , Endotélio Vascular/virologia , Humanos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/virologia , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia
14.
FASEB J ; 34(7): 9156-9179, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32413239

RESUMO

Pseudomonas aeruginosa infection elicits the production of cytotoxic amyloids from lung endothelium, yet molecular mechanisms of host-pathogen interaction that underlie the amyloid production are not well understood. We examined the importance of type III secretion system (T3SS) effectors in the production of cytotoxic amyloids. P aeruginosa possessing a functional T3SS and effectors induced the production and release of cytotoxic amyloids from lung endothelium, including beta amyloid, and tau. T3SS effector intoxication was sufficient to generate cytotoxic amyloid release, yet intoxication with exoenzyme Y (ExoY) alone or together with exoenzymes S and T (ExoS/T/Y) generated the most virulent amyloids. Infection with lab and clinical strains engendered cytotoxic amyloids that were capable of being propagated in endothelial cell culture and passed to naïve cells, indicative of a prion strain. Conversely, T3SS-incompetent P aeruginosa infection produced non-cytotoxic amyloids with antimicrobial properties. These findings provide evidence that (1) endothelial intoxication with ExoY is sufficient to elicit self-propagating amyloid cytotoxins during infection, (2) pulmonary endothelium contributes to innate immunity by generating antimicrobial amyloids in response to bacterial infection, and (3) ExoY contributes to the virulence arsenal of P aeruginosa through the subversion of endothelial amyloid host-defense to promote a lung endothelial-derived cytotoxic proteinopathy.


Assuntos
Amiloide/química , Antibacterianos/farmacologia , Células Endoteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Príons/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/isolamento & purificação , Animais , Proteínas de Bactérias/imunologia , Citotoxinas/farmacologia , Células Endoteliais/imunologia , Células Endoteliais/microbiologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Pulmão/imunologia , Pulmão/microbiologia , Masculino , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Virulência/efeitos dos fármacos
15.
Am J Respir Cell Mol Biol ; 63(4): 519-530, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32628869

RESUMO

KD025 is a ROCK2 inhibitor currently being tested in clinical trials for the treatment of fibrotic lung diseases. The therapeutic effects of KD025 are partly due to its inhibition of profibrotic pathways and fat metabolism. However, whether KD025 affects pulmonary microvascular endothelial cell (PMVEC) function is unknown, despite evidence that alveolar-capillary membrane disruption constitutes major causes of death in fibrotic lung diseases. We hypothesized that KD025 regulates PMVEC metabolism, pH, migration, and survival, a series of interrelated functional characteristics that determine pulmonary barrier integrity. We used PMVECs isolated from Sprague Dawley rats. KD025 dose-dependently decreased lactate production and glucose consumption. The inhibitory effect of KD025 was more potent compared with other metabolic modifiers, including 2-deoxy-glucose, extracellular acidosis, dichloroacetate, and remogliflozin. Interestingly, KD025 increased oxidative phosphorylation, whereas 2-deoxy-glucose did not. KD025 also decreased intracellular pH and induced a compensatory increase in anion exchanger 2. KD025 inhibited PMVEC migration, but fasudil (nonspecific ROCK inhibitor) did not. We tested endothelial permeability in vivo using Evans Blue dye in the bleomycin pulmonary fibrosis model. Baseline permeability was decreased in KD025-treated animals independent of bleomycin treatment. Under hypoxia, KD025 increased PMVEC necrosis as indicated by increased lactate dehydrogenase release and propidium iodide uptake and decreased ATP; it did not affect Annexin V binding. ROCK2 knockdown had no effect on PMVEC metabolism, pH, and migration, but it increased nonapoptotic caspase-3 activity. Together, we report that KD025 promotes oxidative phosphorylation; decreases glycolysis, intracellular pH, and migration; and strengthens pulmonary barrier integrity in a ROCK2-independent manner.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Pulmão/efeitos dos fármacos , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Anexina A5/metabolismo , Movimento Celular/efeitos dos fármacos , Desoxiglucose/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Glicólise/efeitos dos fármacos , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/metabolismo , Pulmão/metabolismo , Masculino , Fosforilação Oxidativa/efeitos dos fármacos , Propídio/farmacologia , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
16.
Am J Respir Cell Mol Biol ; 63(2): 234-243, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32243761

RESUMO

Pseudomonas aeruginosa is a lethal pathogen that causes high mortality and morbidity in immunocompromised and critically ill patients. The type III secretion system (T3SS) of P. aeruginosa mediates many of the adverse effects of infection with this pathogen, including increased lung permeability in a Toll-like receptor 4/RhoA/PAI-1 (plasminogen activator inhibitor-1)-dependent manner. α-Tocopherol has antiinflammatory properties that may make it a useful adjunct in treatment of this moribund infection. We measured transendothelial and transepithelial resistance, RhoA and PAI-1 activation, stress fiber formation, P. aeruginosa T3SS exoenzyme (ExoY) intoxication into host cells, and survival in a murine model of pneumonia in the presence of P. aeruginosa and pretreatment with α-tocopherol. We found that α-tocopherol alleviated P. aeruginosa-mediated alveolar endothelial and epithelial paracellular permeability by inhibiting RhoA, in part, via PAI-1 activation, and increased survival in a mouse model of P. aeruginosa pneumonia. Furthermore, we found that α-tocopherol decreased the activation of RhoA and PAI-1 by blocking the injection of T3SS exoenzymes into alveolar epithelial cells. P. aeruginosa is becoming increasingly antibiotic resistant. We provide evidence that α-tocopherol could be a useful therapeutic agent for individuals who are susceptible to infection with P. aeruginosa, such as those who are immunocompromised or critically ill.


Assuntos
Pneumonia/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , alfa-Tocoferol/farmacologia , Animais , Proteínas de Bactérias/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Pseudomonas aeruginosa/metabolismo , Ratos , Sistemas de Secreção Tipo III/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo
17.
Am J Physiol Lung Cell Mol Physiol ; 319(2): L380-L390, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579398

RESUMO

Caspase-3 and -7 are executioner caspases whose enzymatic activity is necessary to complete apoptotic cell death. Here, we questioned whether endothelial cell infection leads to caspase-3/7-mediated cell death. Pulmonary microvascular endothelial cells (PMVECs) were infected with Pseudomonas aeruginosa (PA103). PA103 caused cell swelling with a granular appearance, paralleled by intracellular caspase-3/7 activation and cell death. In contrast, PMVEC infection with ExoY+ (PA103 ΔexoUexoT::Tc pUCPexoY) caused cell rounding, but it did not activate intracellular caspase-3/7 and it did not cause cell death. However, ExoY+ led to a time-dependent accumulation of active caspase-7, but not caspase-3, in the supernatant, independent of apoptosis. To study the function of extracellular caspase-7, caspase-7- and caspase-3-deficient PMVECs were generated using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology. Caspase-7 activity was significantly reduced in supernatants from infected caspase-7-deficient cells but was unchanged in supernatants from infected caspase-3 deficient cells, indicating an uncoupling in the mechanism of activation of these two enzymes. Because ExoY+ leads to the release of heat stable amyloid cytotoxins that are responsible for transmissible cytotoxicity, we next questioned whether caspase-7 contributes to the severity of this process. Supernatants obtained from infected caspase-7-deficient cells displayed significantly reduced transmissible cytotoxicity when compared with supernatants from infected wild-type controls, illustrating an essential role for caspase-7 in promoting the potency of transmissible cytotoxicity. Thus, we report a mechanism whereby ExoY+ infection induces active caspase-7 accumulation in the extracellular space, independent of both caspase-3 and cell death, where it modulates ExoY+-induced transmissible cytotoxicity.


Assuntos
Apoptose/fisiologia , Proteínas de Bactérias/metabolismo , Caspase 7/metabolismo , Glucosiltransferases/metabolismo , Animais , Caspase 3/metabolismo , Morte Celular/fisiologia , Células Cultivadas , Células Endoteliais/metabolismo , Pulmão/metabolismo , Pulmão/microbiologia , Masculino , Microvasos/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/patogenicidade , Ratos , Ratos Sprague-Dawley
18.
Am J Physiol Heart Circ Physiol ; 319(2): H349-H358, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32589443

RESUMO

Here, we report the generation of a Cre-recombinase (iCre) transgenic rat, where iCre is driven using a vascular endothelial-cadherin (CDH5) promoter. The CDH5 promoter was cloned from rat pulmonary microvascular endothelial cells and demonstrated ~60% similarity to the murine counterpart. The cloned rat promoter was 2,508 bp, it extended 79 bp beyond the transcription start site, and it was 22,923 bp upstream of the translation start site. The novel promoter was cloned upstream of codon-optimized iCre and subcloned into a Sleeping Beauty transposon vector for transpositional transgenesis in Sprague-Dawley rats. Transgenic founders were generated and selected for iCre expression. Crossing the CDH5-iCre rat with a tdTomato reporter rat resulted in progeny displaying endothelium-restricted fluorescence. tdTomato fluorescence was prominent in major arteries and veins, and it was similar in males and females. Quantitative analysis of the carotid artery and the jugular vein revealed that, on average, more than 50% of the vascular surface area exhibited strong fluorescence. tdTomato fluorescence was observed in the circulations of every tissue tested. The microcirculation in all tissues tested displayed homogenous fluorescence. Fluorescence was examined across young (6-7.5 mo), middle (14-16.5 mo), and old age (17-19.5 mo) groups. Although tdTomato fluorescence was seen in middle- and old-age animals, the intensity of the fluorescence was significantly reduced compared with that seen in the young rats. Thus, this endothelium-restricted transgenic rat offers a novel platform to test endothelial microheterogeneity within all vascular segments, and it provides exceptional resolution of endothelium within-organ microcirculation for application to translational disease models.NEW & NOTEWORTHY The use of transgenic mice has been instrumental in advancing molecular insight of physiological processes, yet these models oftentimes do not faithfully recapitulate human physiology and pathophysiology. Rat models better replicate some human conditions, like Group 1 pulmonary arterial hypertension. Here, we report the development of an endothelial cell-restricted transgenic reporter rat that has broad application to vascular biology. This first-in-kind model offers exceptional endothelium-restricted tdTomato expression, in both conduit vessels and the microcirculations of organs.


Assuntos
Antígenos CD/genética , Caderinas/genética , Células Endoteliais/metabolismo , Genes Reporter , Integrases/genética , Proteínas Luminescentes/genética , Regiões Promotoras Genéticas , Fatores Etários , Animais , Feminino , Regulação da Expressão Gênica , Integrases/metabolismo , Proteínas Luminescentes/biossíntese , Masculino , Microcirculação , Ratos Sprague-Dawley , Ratos Transgênicos , Distribuição Tecidual , Transposases/genética , Transposases/metabolismo , Proteína Vermelha Fluorescente
19.
Biochem Biophys Res Commun ; 522(2): 279-285, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31879014

RESUMO

In the field of endothelial biology, the term "shear forces" is tied to the forces exerted by the flowing blood on the quiescent cells. But endothelial cells themselves also exert physical forces on their immediate and distant neighbors. Specific factors of such intrinsic mechanical signals most relevant to immediate neighbors include normal (Fn) and shear (Fs) components of intercellular tractions, and those factors most relevant to distant neighbors include contractile or dilatational (Mc) and shear (Ms) components of the moments of cytoskeletal forces. However, for cells within a monolayer, Fn, Fs, Mc, and Ms remain inaccessible to experimental evaluation. Here, we present an approach that enables quantitative assessment of these properties. Remarkably, across a collectively migrating sheet of pulmonary microvascular endothelial cells, Fs was of the same order of magnitude as Fn. Moreover, compared to the normal components (Fn, Mc) of the mechanical signals, the shear components (Fs, Ms) were more distinctive in the cells closer to the migration front. Individual cells had an innately collective tendency to migrate along the axis of maximum contractile moment - a collective migratory process we referred to as cellular plithotaxis. Notably, larger Fs and Ms were associated with stronger plithotaxis, but dilatational moment appeared to disengage plithotactic guidance. Overall, cellular plithotaxis was more strongly associated with the "shear forces" (Fs, Ms) than with the "normal forces" (Fn, Mc). Finally, the mechanical state of the cells with fast migration speed and those with highly circular shape were reminiscent of fluid-like and solid-like matter, respectively. The results repeatedly pointed to neighbors imposing shear forces on a cell as a highly significant event, and hence, the term "shear forces" must include not just the forces from flowing fluid but also the forces from the substrate and neighbors. Collectively, these advances set the stage for deeper understanding of mechanical signaling in cellular monolayers.


Assuntos
Movimento Celular , Espaço Extracelular/fisiologia , Animais , Forma Celular , Ratos , Resistência ao Cisalhamento
20.
FASEB J ; 33(9): 10300-10314, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31211919

RESUMO

Patients with nosocomial pneumonia exhibit elevated levels of neurotoxic amyloid and tau proteins in the cerebrospinal fluid (CSF). In vitro studies indicate that pulmonary endothelium infected with clinical isolates of either Pseudomonas aeruginosa, Klebsiella pneumoniae, or Staphylococcus aureus produces and releases cytotoxic amyloid and tau proteins. However, the effects of the pulmonary endothelium-derived amyloid and tau proteins on brain function have not been elucidated. Here, we show that P. aeruginosa infection elicits accumulation of detergent insoluble tau protein in the mouse brain and inhibits synaptic plasticity. Mice receiving endothelium-derived amyloid and tau proteins via intracerebroventricular injection exhibit a learning and memory deficit in object recognition, fear conditioning, and Morris water maze studies. We compared endothelial supernatants obtained after the endothelia were infected with P. aeruginosa possessing an intact [P. aeruginosa isolated from patient 103 (PA103) supernatant] or defective [mutant strain of P. aeruginosa lacking a functional type 3 secretion system needle tip complex (ΔPcrV) supernatant] type 3 secretion system. Whereas the PA103 supernatant impaired working memory, the ΔPcrV supernatant had no effect. Immunodepleting amyloid or tau proteins from the PA103 supernatant with the A11 or T22 antibodies, respectively, overtly rescued working memory. Recordings from hippocampal slices treated with endothelial supernatants or CSF from patients with or without nosocomial pneumonia indicated that endothelium-derived neurotoxins disrupted the postsynaptic synaptic response. Taken together, these results establish a plausible mechanism for the neurologic sequelae consequent to nosocomial bacterial pneumonia.-Balczon, R., Pittet, J.-F., Wagener, B. M., Moser, S. A., Voth, S., Vorhees, C. V., Williams, M. T., Bridges, J. P., Alvarez, D. F., Koloteva, A., Xu, Y., Zha, X.-M., Audia, J. P., Stevens, T., Lin, M. T. Infection-induced endothelial amyloids impair memory.


Assuntos
Amiloide/toxicidade , Endotélio Vascular/metabolismo , Pulmão/metabolismo , Transtornos da Memória/patologia , Infecções por Pseudomonas/complicações , Pseudomonas aeruginosa/isolamento & purificação , Proteínas tau/toxicidade , Amiloide/metabolismo , Animais , Endotélio Vascular/patologia , Medo , Feminino , Humanos , Aprendizagem , Pulmão/patologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Infecções por Pseudomonas/microbiologia , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa