Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pathophysiology ; 30(3): 420-442, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37755398

RESUMO

Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke resulting from the rupture of an arterial vessel within the brain. Unlike other stroke types, SAH affects both young adults (mid-40s) and the geriatric population. Patients with SAH often experience significant neurological deficits, leading to a substantial societal burden in terms of lost potential years of life. This review provides a comprehensive overview of SAH, examining its development across different stages (early, intermediate, and late) and highlighting the pathophysiological and pathohistological processes specific to each phase. The clinical management of SAH is also explored, focusing on tailored treatments and interventions to address the unique pathological changes that occur during each stage. Additionally, the paper reviews current treatment modalities and pharmacological interventions based on the evolving guidelines provided by the American Heart Association (AHA). Recent advances in our understanding of SAH will facilitate clinicians' improved management of SAH to reduce the incidence of delayed cerebral ischemia in patients.

2.
J Biol Eng ; 14: 25, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944070

RESUMO

Nerve guidance conduits (NGCs) have emerged from recent advances within tissue engineering as a promising alternative to autografts for peripheral nerve repair. NGCs are tubular structures with engineered biomaterials, which guide axonal regeneration from the injured proximal nerve to the distal stump. NGC design can synergistically combine multiple properties to enhance proliferation of stem and neuronal cells, improve nerve migration, attenuate inflammation and reduce scar tissue formation. The aim of most laboratories fabricating NGCs is the development of an automated process that incorporates patient-specific features and complex tissue blueprints (e.g. neurovascular conduit) that serve as the basis for more complicated muscular and skin grafts. One of the major limitations for tissue engineering is lack of guidance for generating tissue blueprints and the absence of streamlined manufacturing processes. With the rapid expansion of machine intelligence, high dimensional image analysis, and computational scaffold design, optimized tissue templates for 3D bioprinting (3DBP) are feasible. In this review, we examine the translational challenges to peripheral nerve regeneration and where machine intelligence can innovate bottlenecks in neural tissue engineering.

3.
Biotechnol Adv ; 45: 107652, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33122013

RESUMO

Advanced manufacturing and 3D printing are transformative technologies currently undergoing rapid adoption in healthcare, a traditionally non-manufacturing sector. Recent development in this field, largely enabled by merging different disciplines, has led to important clinical applications from anatomical models to regenerative bioscaffolding and devices. Although much research to-date has focussed on materials, designs, processes, and products, little attention has been given to the design and requirements of facilities for enabling clinically relevant biofabrication solutions. These facilities are critical to overcoming the major hurdles to clinical translation, including solving important issues such as reproducibility, quality control, regulations, and commercialization. To improve process uniformity and ensure consistent development and production, large-scale manufacturing of engineered tissues and organs will require standardized facilities, equipment, qualification processes, automation, and information systems. This review presents current and forward-thinking guidelines to help design biofabrication laboratories engaged in engineering model and tissue constructs for therapeutic and non-therapeutic applications.


Assuntos
Bioimpressão , Laboratórios , Impressão Tridimensional , Reprodutibilidade dos Testes , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa