Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Immunol ; 21(7): 766-776, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424367

RESUMO

Tissue-resident memory T (TRM) cells, functionally distinct from circulating memory T cells, have a critical role in protective immunity in tissues, are more efficacious when elicited after vaccination and yield more effective antitumor immunity, yet the signals that direct development of TRM cells are incompletely understood. Here we show that type 1 regulatory T (Treg) cells, which express the transcription factor T-bet, promote the generation of CD8+ TRM cells. The absence of T-bet-expressing type 1 Treg cells reduces the presence of TRM cells in multiple tissues and increases pathogen burden upon infectious challenge. Using infection models, we show that type 1 Treg cells are specifically recruited to local inflammatory sites via the chemokine receptor CXCR3. Close proximity with effector CD8+ T cells and Treg cell expression of integrin-ß8 endows the bioavailability of transforming growth factor-ß in the microenvironment, thereby promoting the generation of CD8+ TRM cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Comunicação Celular/imunologia , Diferenciação Celular/imunologia , Memória Imunológica , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/transplante , Coccidiose/imunologia , Coccidiose/parasitologia , Modelos Animais de Doenças , Eimeria/imunologia , Feminino , Humanos , Cadeias beta de Integrinas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Receptores CXCR3/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/transplante , Fator de Crescimento Transformador beta/metabolismo
2.
Immunity ; 54(10): 2185-2187, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644553

RESUMO

Both innate and adaptive immunity are orchestrated by multiple cell types, specialized cell lineages, and their spatiotemporal encounters. It is thought that adaptive-like NK cell responses to viral infection mainly involve circulating bona fide NK cells. In this issue of Immunity, Flommersfeld et al. (2021) identify a splenic-resident ILC1-like NK cell subset that facilitates CD8+ T cell-DC interactions during anti-viral defense.


Assuntos
Células Matadoras Naturais , Viroses , Imunidade Adaptativa , Comunicação Celular , Linhagem da Célula , Humanos
3.
Immunity ; 52(6): 1075-1087.e8, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32445619

RESUMO

Enhancing immune cell functions in tumors remains a major challenge in cancer immunotherapy. Hypoxia is a common feature of solid tumors, and cells adapt by upregulating the transcription factor HIF-1α. Here, we defined the transcriptional landscape of mouse tumor-infiltrating natural killer (NK) cells by using single-cell RNA sequencing. Conditional deletion of Hif1a in NK cells resulted in reduced tumor growth, elevated expression of activation markers, effector molecules, and an enriched NF-κB pathway in tumor-infiltrating NK cells. Interleukin-18 (IL-18) from myeloid cells was required for NF-κB activation and the enhanced anti-tumor activity of Hif1a-/- NK cells. Extended culture with an HIF-1α inhibitor increased human NK cell responses. Low HIF1A expression was associated with high expression of IFNG in human tumor-infiltrating NK cells, and an enriched NK-IL18-IFNG signature in solid tumors correlated with increased overall patient survival. Thus, inhibition of HIF-1α unleashes NK cell anti-tumor activity and could be exploited for cancer therapy.


Assuntos
Citotoxicidade Imunológica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Animais , Biomarcadores , Biologia Computacional , Citocinas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ativação Linfocitária/genética , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/mortalidade , Prognóstico , Análise de Célula Única , Transcriptoma , Microambiente Tumoral/imunologia
4.
Eur J Immunol ; 54(7): e2250342, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593338

RESUMO

Natural killer (NK) cells are innate cytotoxic lymphocytes that contribute to immune responses against stressed, transformed, or infected cells. NK cell effector functions are regulated by microenvironmental factors, including cytokines, metabolites, and nutrients. Vitamin A is an essential micronutrient that plays an indispensable role in embryogenesis and development, but was also reported to regulate immune responses. However, the role of vitamin A in regulating NK cell functions remains poorly understood. Here, we show that the most prevalent vitamin A metabolite, all-trans retinoic acid (atRA), induces transcriptional and functional changes in NK cells leading to altered metabolism and reduced IFN-γ production in response to a wide range of stimuli. atRA-exposed NK cells display a reduced ability to support dendritic cell (DC) maturation and to eliminate immature DCs. Moreover, they support the polarization and proliferation of regulatory T cells. These results imply that in vitamin A-enriched environments, NK cells can acquire functions that might promote tolerogenic immunity and/or immunosuppression.


Assuntos
Diferenciação Celular , Células Dendríticas , Interferon gama , Células Matadoras Naturais , Linfócitos T Reguladores , Vitamina A , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Interferon gama/metabolismo , Diferenciação Celular/imunologia , Diferenciação Celular/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Humanos , Vitamina A/metabolismo , Vitamina A/farmacologia , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Tretinoína/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Células Cultivadas , Tolerância Imunológica/efeitos dos fármacos
5.
Nat Immunol ; 19(7): 650-652, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915295
6.
Circulation ; 146(23): 1783-1799, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36325910

RESUMO

BACKGROUND: Scavenger receptors Stabilin-1 (Stab1) and Stabilin-2 (Stab2) are preferentially expressed by liver sinusoidal endothelial cells. They mediate the clearance of circulating plasma molecules controlling distant organ homeostasis. Studies suggest that Stab1 and Stab2 may affect atherosclerosis. Although subsets of tissue macrophages also express Stab1, hematopoietic Stab1 deficiency does not modulate atherogenesis. Here, we comprehensively studied how targeting Stab1 and Stab2 affects atherosclerosis. METHODS: ApoE-KO mice were interbred with Stab1-KO and Stab2-KO mice and fed a Western diet. For antibody targeting, Ldlr-KO mice were also used. Unbiased plasma proteomics were performed and independently confirmed. Ligand binding studies comprised glutathione-S-transferase-pulldown and endocytosis assays. Plasma proteome effects on monocytes were studied by single-cell RNA sequencing in vivo, and by gene expression analyses of Stabilin ligand-stimulated and plasma-stimulated bone marrow-derived monocytes/macrophages in vitro. RESULTS: Spontaneous and Western diet-associated atherogenesis was significantly reduced in ApoE-Stab1-KO and ApoE-Stab2-KO mice. Similarly, inhibition of Stab1 or Stab2 by monoclonal antibodies significantly reduced Western diet-associated atherosclerosis in ApoE-KO and Ldlr-KO mice. Although neither plasma lipid levels nor circulating immune cell numbers were decisively altered, plasma proteomics revealed a switch in the plasma proteome, consisting of 231 dysregulated proteins comparing wildtype with Stab1/2-single and Stab1/2-double KO, and of 41 proteins comparing ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO. Among this broad spectrum of common, but also disparate scavenger receptor ligand candidates, periostin, reelin, and TGFBi (transforming growth factor, ß-induced), known to modulate atherosclerosis, were independently confirmed as novel circulating ligands of Stab1/2. Single-cell RNA sequencing of circulating myeloid cells of ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO mice showed transcriptomic alterations in patrolling (Ccr2-/Cx3cr1++/Ly6Clo) and inflammatory (Ccr2+/Cx3cr1+/Ly6Chi) monocytes, including downregulation of proatherogenic transcription factor Egr1. In wildtype bone marrow-derived monocytes/macrophages, ligand exposure alone did not alter Egr1 expression in vitro. However, exposure to plasma from ApoE-Stab1-KO and ApoE-Stab2-KO mice showed a reverted proatherogenic macrophage activation compared with ApoE-KO plasma, including downregulation of Egr1 in vitro. CONCLUSIONS: Inhibition of Stab1/Stab2 mediates an anti-inflammatory switch in the plasma proteome, including direct Stabilin ligands. The altered plasma proteome suppresses both patrolling and inflammatory monocytes and, thus, systemically protects against atherogenesis. Altogether, anti-Stab1- and anti-Stab2-targeted therapies provide a novel approach for the future treatment of atherosclerosis.


Assuntos
Aterosclerose , Monócitos , Animais , Camundongos , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Células Endoteliais/metabolismo , Ligantes , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Proteoma , Receptores Depuradores/metabolismo , Camundongos Knockout para ApoE
7.
Cancer Cell Int ; 22(1): 398, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496412

RESUMO

BACKGROUND: Hyaluronan receptor LYVE-1 is expressed by liver sinusoidal endothelial cells (LSEC), lymphatic endothelial cells and specialized macrophages. Besides binding to hyaluronan, LYVE-1 can mediate adhesion of leukocytes and cancer cells to endothelial cells. Here, we assessed the impact of LYVE-1 on physiological liver functions and metastasis. METHODS: Mice with deficiency of Lyve-1 (Lyve-1-KO) were analyzed using histology, immunofluorescence, microarray analysis, plasma proteomics and flow cytometry. Liver metastasis was studied by intrasplenic/intravenous injection of melanoma (B16F10 luc2, WT31) or colorectal carcinoma (MC38). RESULTS: Hepatic architecture, liver size, endothelial differentiation and angiocrine functions were unaltered in Lyve-1-KO. Hyaluronan plasma levels were significantly increased in Lyve-1-KO. Besides, plasma proteomics revealed increased carbonic anhydrase-2 and decreased FXIIIA. Furthermore, gene expression analysis of LSEC indicated regulation of immunological pathways. Therefore, liver metastasis of highly and weakly immunogenic tumors, i.e. melanoma and colorectal carcinoma (CRC), was analyzed. Hepatic metastasis of B16F10 luc2 and WT31 melanoma cells, but not MC38 CRC cells, was significantly reduced in Lyve-1-KO mice. In vivo retention assays with B16F10 luc2 cells were unaltered between Lyve-1-KO and control mice. However, in tumor-free Lyve-1-KO livers numbers of hepatic CD4+, CD8+ and regulatory T cells were increased. In addition, iron deposition was found in F4/80+ liver macrophages known to exert pro-inflammatory effects. CONCLUSION: Lyve-1 deficiency controlled hepatic metastasis in a tumor cell-specific manner leading to reduced growth of hepatic metastases of melanoma, but not CRC. Anti-tumorigenic effects are likely due to enhancement of the premetastatic hepatic immune microenvironment influencing early liver metastasis formation.

8.
Proc Natl Acad Sci U S A ; 115(26): E5980-E5989, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29895693

RESUMO

CD8+ T cells are considered prototypical cells of adaptive immunity. Here, we uncovered a distinct CD8+ T cell population expressing the activating natural killer (NK) receptor NKp30 in the peripheral blood of healthy individuals. We revealed that IL-15 could de novo induce NKp30 expression in a population of CD8+ T cells and drive their differentiation toward a broad innate transcriptional landscape. The adaptor FcεRIγ was concomitantly induced and was shown to be crucial to enable NKp30 cell-surface expression and function in CD8+ T cells. FcεRIγ de novo expression required promoter demethylation and was accompanied by acquisition of the signaling molecule Syk and the "innate" transcription factor PLZF. IL-15-induced NKp30+CD8+ T cells exhibited high NK-like antitumor activity in vitro and were able to synergize with T cell receptor signaling. Importantly, this population potently controlled tumor growth in a preclinical xenograft mouse model. Our study, while blurring the borders between innate and adaptive immunity, reveals a unique NKp30+FcεRIγ+CD8+ T cell population with high antitumor therapeutic potential.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade Celular , Células Matadoras Naturais/imunologia , Receptor 3 Desencadeador da Citotoxicidade Natural/imunologia , Neoplasias/imunologia , Receptores Fc/imunologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Células Matadoras Naturais/patologia , Masculino , Neoplasias/patologia
9.
Gut ; 69(9): 1677-1690, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31992593

RESUMO

OBJECTIVE: TGF-ß2 (TGF-ß, transforming growth factor beta), the less-investigated sibling of TGF-ß1, is deregulated in rodent and human liver diseases. Former data from bile duct ligated and MDR2 knockout (KO) mouse models for human cholestatic liver disease suggested an involvement of TGF-ß2 in biliary-derived liver diseases. DESIGN: As we also found upregulated TGFB2 in liver tissue of patients with primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), we now fathomed the positive prospects of targeting TGF-ß2 in early stage biliary liver disease using the MDR2-KO mice. Specifically, the influence of TgfB2 silencing on the fibrotic and inflammatory niche was analysed on molecular, cellular and tissue levels. RESULTS: TgfB2-induced expression of fibrotic genes in cholangiocytes and hepatic stellate cellswas detected. TgfB2 expression in MDR2-KO mice was blunted using TgfB2-directed antisense oligonucleotides (AON). Upon AON treatment, reduced collagen deposition, hydroxyproline content and αSMA expression as well as induced PparG expression reflected a significant reduction of fibrogenesis without adverse effects on healthy livers. Expression analyses of fibrotic and inflammatory genes revealed AON-specific regulatory effects on Ccl3, Ccl4, Ccl5, Mki67 and Notch3 expression. Further, AON treatment of MDR2-KO mice increased tissue infiltration by F4/80-positive cells including eosinophils, whereas the number of CD45-positive inflammatory cells decreased. In line, TGFB2 and CD45 expression correlated positively in PSC/PBC patients and localised in similar areas of the diseased liver tissue. CONCLUSIONS: Taken together, our data suggest a new mechanistic explanation for amelioration of fibrogenesis by TGF-ß2 silencing and provide a direct rationale for TGF-ß2-directed drug development.


Assuntos
Colangite Esclerosante , Inativação Gênica , Cirrose Hepática Biliar , Cirrose Hepática , Oligonucleotídeos Antissenso , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Colangite Esclerosante/metabolismo , Colangite Esclerosante/patologia , Modelos Animais de Doenças , Descoberta de Drogas , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática Biliar/patologia , Camundongos , Camundongos Knockout , Regulação para Cima , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
10.
J Immunol ; 192(9): 4184-91, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24688023

RESUMO

NK cells express an array of activating and inhibitory receptors that determine NK cell responses upon triggering by cognate ligands. Although activating NK cell receptors recognize mainly ligands expressed by stressed, virus-infected, or transformed cells, most inhibitory receptors engage MHC class I, preventing NK cell activation in response to healthy cells. In this study, we provide insight into the regulation and function of additional receptors involved in mouse NK cell responses: CTLA-4 and CD28. CTLA-4 and CD28 engage the same ligands, B7-1 and B7-2, which are primarily expressed by APCs, such as dendritic cells. Our data demonstrate that activation of mouse NK cells with IL-2 induces the expression of CTLA-4 and upregulates CD28. CTLA-4 expression in IL-2-expanded NK cells was further up- or downregulated by IL-12 or TGF-ß, respectively. Using gene-deficient NK cells, we show that CD28 induces, and CTLA-4 inhibits, IFN-γ release by NK cells upon engagement by the recombinant ligand, B7-1, or upon coculture with mature dendritic cells. Notably, we show that mouse NK cells infiltrating solid tumors express CD28 and CTLA-4 and respond to stimulation with recombinant B7-1, suggesting that the NK cell responses mediated by the CD28/CTLA-4:B7-1/B7-2 system could be of importance during malignant disease. Accordingly, our study might have implications for immunotherapy of cancer based on blocking anti-CTLA-4 mAbs.


Assuntos
Antígeno CTLA-4/imunologia , Células Dendríticas/imunologia , Interferon gama/biossíntese , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Animais , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Antígeno CTLA-4/metabolismo , Separação Celular , Células Dendríticas/metabolismo , Citometria de Fluxo , Humanos , Interferon gama/imunologia , Células Matadoras Naturais/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Experimentais/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
J Neurosci ; 34(50): 16784-95, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25505331

RESUMO

Neuroinflammation plays a key role in secondary brain damage after stroke. Although deleterious effects of proinflammatory cytokines are well characterized, direct cytotoxic effects of invading immune cells on the ischemic brain and the importance of their antigen-dependent activation are essentially unknown. Here we examined the effects of adaptive and innate immune cells-cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells-that share the direct perforin-mediated cytotoxic pathway on outcome after cerebral ischemia in mice. Although CTLs and NK cells both invaded the ischemic brain, only brain-infiltrating CTLs but not NK cells were more activated than their splenic counterparts. Depletion of CTLs decreased infarct volumes and behavioral deficit in two ischemia models, whereas NK cell depletion had no effect. Correspondingly, adoptive CTL transfer from wild-type into Rag1 knock-out mice increased infarct size. Adoptive CTL transfer from perforin knock-out or interferon-γ knock-out mice into Rag1 knock-out mice revealed that CTL neurotoxicity was mediated by perforin. Accordingly, CTLs isolated from wild-type or interferon-γ knock-out but not from perforin knock-out mice induced neuronal cell death in vitro. CTLs derived from ovalbumin-specific T-cell receptor transgenic mice were not activated and infiltrated less into the ischemic brain compared with wild-type CTLs. Their transfer did not increase the infarct size of Rag1 knock-out mice, indicating antigen-dependent activation as an essential component of CTL neurotoxicity. Our findings underscore the importance of antigen-dependent, direct cytotoxic immune responses in stroke and suggest modulation of CTLs and their effector pathways as a potential new strategy for stroke therapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citotoxinas/toxicidade , Modelos Animais de Doenças , Perforina/toxicidade , Acidente Vascular Cerebral/imunologia , Animais , Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Acidente Vascular Cerebral/induzido quimicamente , Acidente Vascular Cerebral/patologia
12.
Int J Cancer ; 136(10): 2458-63, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25331529

RESUMO

The S100A8/A9 heterodimer (calprotectin) acts as a danger signal when secreted into the extracellular space during inflammation and tissue damage. It promotes proinflammatory responses and drives tumor development in different models of inflammation-driven carcinogenesis. S100A8/A9 is strongly expressed in several human tumors, including hepatocellular carcinoma (HCC). Apart from this evidence, the role of calprotectin in hepatocyte transformation and tumor microenvironment is still unknown. The aim of this study was to define the function of S100A8/A9 in inflammation-driven HCC. Mice lacking S100a9 were crossed with the Mdr2(-/-) model, a prototype of inflammation-induced HCC formation. S100a9(-/-) Mdr2(-/-) (dKO) mice displayed no significant differences in tumor incidence or multiplicity compared to Mdr2(-/-) animals. Chronic liver inflammation, fibrosis and oval cell activation were not affected upon S100a9 deletion. Our data demonstrate that, although highly upregulated, calprotectin is dispensable in the onset and development of HCC, and in the maintenance of liver inflammation.


Assuntos
Calgranulina B/genética , Inflamação/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Fígado/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Técnicas de Inativação de Genes , Humanos , Inflamação/patologia , Complexo Antígeno L1 Leucocitário/metabolismo , Fígado/patologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Camundongos , Camundongos Knockout
13.
Blood ; 122(8): 1411-8, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23847195

RESUMO

Cytotoxic lymphocytes are important for immune responses against viral infections and cancer. They are able to kill target cells through the release of cytotoxic granules (CGs) without being harmed in the process. Because the lysosomal-associated membrane proteins (LAMPs) appear on the cell surface after CG exocytosis, we hypothesized that some of these proteins might be involved in transiently protecting cytotoxic lymphocytes from self-destruction. Intracellular expression of CD107a/LAMP-1, and to a lesser extent that of CD107b/LAMP-2, correlated with lymphocyte CG content. Engineered surface expression of CD107a/LAMP-1, but not of CD107b/LAMP-2, reduced the granule-mediated killing of transfected target cells. This was dependent on glycosylation of the CD107a/LAMP-1 hinge. Moreover, surface expression of CD107a/LAMP-1 reduced binding of perforin to cells. Importantly, knockdown of CD107a/LAMP-1 in primary human natural killer (NK) cells and deficiency of CD107a/LAMP-1 in mice resulted in increased NK cell apoptosis upon target cell-induced degranulation. Thus, our data support a novel role of CD107a/LAMP-1 in the protection of NK cells from degranulation-associated suicide, which may represent a general mechanism to transiently limit self-destruction by cytotoxic lymphocytes upon target cell killing.


Assuntos
Degranulação Celular , Membrana Celular/metabolismo , Células Matadoras Naturais/citologia , Linfócitos/citologia , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Animais , Apoptose , Linhagem Celular , Citotoxicidade Imunológica , Engenharia Genética , Glicosilação , Células HeLa , Humanos , Células K562 , Camundongos , Perforina/metabolismo , RNA Interferente Pequeno/metabolismo
14.
J Immunol ; 189(12): 5602-11, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23152559

RESUMO

Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of myeloid cells in cancer patients and tumor-bearing mice that potently inhibits T cell responses. During tumor progression, MDSCs accumulate in several organs, including the tumor tissue. So far, tumor-infiltrating MDSC subpopulations remain poorly explored. In this study, we performed global gene expression profiling of mouse tumor-infiltrating granulocytic and monocytic (MO-MDSC) subsets compared with MDSCs from peripheral blood. RMA-S lymphoma-infiltrating MO-MDSCs not only produced high levels of NO and arginase-1, but also greatly increased levels of chemokines comprising the CCR5 ligands CCL3, CCL4, and CCL5. MO-MDSCs isolated from B16 melanoma and from skin tumor-bearing ret transgenic mice also expressed high levels of CCL3, CCL4, and CCL5. Expression of CCR5 was preferentially detected on regulatory T cells (Tregs). Accordingly, tumor-infiltrating MO-MDSCs directly attracted high numbers of Tregs via CCR5 in vitro. Intratumoral injection of CCL4 or CCL5 increased tumor-infiltrating Tregs, and deficiency of CCR5 led to their profound decrease. Moreover, in CCR5-deficient mice, RMA-S and B16 tumor growth was delayed emphasizing the importance of CCR5 in the control of antitumor immune responses. Overall, our data demonstrate that chemokines secreted by tumor-infiltrating MO-MDSCs recruit high numbers of Tregs revealing a novel suppressive role of MDSCs with potential clinical implications for the development of cancer immunotherapies.


Assuntos
Quimiotaxia de Leucócito/imunologia , Tolerância Imunológica/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Monócitos/imunologia , Células Mieloides/imunologia , Receptores CCR5/fisiologia , Linfócitos T Reguladores/imunologia , Animais , Linhagem Celular Tumoral , Quimiocina CCL3/biossíntese , Quimiocina CCL3/genética , Quimiocina CCL3/metabolismo , Quimiocina CCL4/biossíntese , Quimiocina CCL4/genética , Quimiocina CCL4/metabolismo , Quimiocina CCL5/biossíntese , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiotaxia de Leucócito/genética , Modelos Animais de Doenças , Tolerância Imunológica/genética , Ligantes , Linfoma/imunologia , Linfoma/metabolismo , Linfoma/patologia , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Monócitos/metabolismo , Monócitos/patologia , Células Mieloides/metabolismo , Células Mieloides/patologia , Receptores CCR5/deficiência , Receptores CCR5/metabolismo , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia
15.
BMJ Open ; 14(5): e081139, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772887

RESUMO

OBJECTIVES: Healthcare grapples with staff shortages and rising burnout rates for medical students, residents and specialists. To prioritise both their well-being and the delivery of high-quality patient care, it becomes imperative to deepen our understanding of physicians' developmental aims and needs. Our first aim is, therefore, to gain comprehensive insights into the specific developmental aims physicians prioritise by examining the coaching goals they set at the beginning of coaching. Since physicians face distinct roles as they advance in their careers, our second aim is to highlight similarities and differences in developmental aims and needs among individuals at various medical career stages. DESIGN: We conducted a qualitative analysis of 2571 coaching goals. We performed an inductive thematic analysis to code one-half of coaching goals and a codebook thematic analysis for the other half. Our interpretation of the findings was grounded in a critical realist approach. SETTING: Sixteen hospitals in the Netherlands. PARTICIPANTS: A total of 341 medical clerkship students, 336 medical residents, 122 early-career specialists, 82 mid-career specialists and 57 late-career specialists provided their coaching goals at the start of coaching. RESULTS: The findings revealed that coachees commonly set goals about their career and future, current job and tasks, interpersonal work relations, self-insight and development, health and well-being, nonwork aspects and the coaching process. Furthermore, the findings illustrate how the diversity of coaching goals increases as physicians advance in their careers. CONCLUSIONS: Our findings underscore the significance of recognising distinct challenges at various career stages and the necessity for tailoring holistic support for physicians. This insight holds great relevance for healthcare organisations, enabling them to better align system interventions with physicians' needs and enhance support. Moreover, our classification of coaching goals serves as a valuable foundation for future research, facilitating a deeper exploration of how these goals influence coaching outcomes.


Assuntos
Objetivos , Tutoria , Estudantes de Medicina , Humanos , Feminino , Países Baixos , Masculino , Estudantes de Medicina/psicologia , Pesquisa Qualitativa , Médicos/psicologia , Adulto , Internato e Residência , Escolha da Profissão , Especialização , Esgotamento Profissional/prevenção & controle
16.
ACS Appl Polym Mater ; 6(12): 7088-7101, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38961861

RESUMO

Functional silanes are multifaceted cross-linkers, compatibilizers, coupling agents, and surface modifiers. Herein, we present organofunctional polysiloxane building blocks that offer great versatility in terms of molecular weight, degree of condensation, and the choice and loading of organic substituent groups. The organofunctional polyethoxysilanes (funPEOS) are prepared in a one-pot, two-step process: synthesis of the PEOS carrier/substrate, followed by grafting a functional silane "shell", both based on condensation with acetic anhydride. The reaction was optimized at the lab scale and scaled up to a 7 L reactor. The acetylation, condensation, and hyperbranched structure of the carrier were confirmed by 29Si NMR, while 29Si-29Si 2D INADEQUATE NMR provides strong evidence for the grafting of functional silanes onto the carrier (Q-T coupling). IR, 1H, and 13C NMR spectroscopy demonstrate that the functional groups remain intact. The molar mass can be tailored by stoichiometric control of the acetic anhydride to silane monomer ratio (M n 3500-20,000 g/mol). The compounds are stable organic liquids with a long shelf life. Selected applications are presented: scratch-resistant coatings with water contact angles of ∼90°, stable water emulsions, and surfactant-free, mesoporous silica foams.

17.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37631044

RESUMO

Herb-induced liver injury (HILI) caused by herbal supplements, natural products, and products used in traditional medicine are important for differential diagnoses in patients with acute liver injury without an obvious etiology. The root of Withania somnifera (L.) Dunal, commonly known as ashwagandha, has been used in Ayurvedic medicine for thousands of years to promote health and longevity. Due to various biological activities, ashwagandha and its extracts became widespread as herbal supplements on the global market. Although it is generally considered safe, there are several reported cases of ashwagandha-related liver injury, and one case ended with liver transplantation. In this paper, we review all reported cases so far. Additionally, we describe two new cases of ashwagandha hepatotoxicity. In the first case, a 36-year-old man used ashwagandha capsules (450 mg, three times daily) for 6 months before he developed nausea, pruritus, and dark-colored urine. In the second case, a 30-year-old woman developed pruritus after 45 days of using ashwagandha capsules (450 mg). In both cases, serum bilirubin and liver enzymes (aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) were increased. The liver injury pattern was hepatocellular (R-value 11.1) and mixed (R-value 2.6), respectively. The updated Roussel Uclaf Causality Assessment Method (RUCAM) (both cases with a score of seven) indicated a "probable" relationship with ashwagandha. Clinical and liver function improvements were observed after the discontinuation of ashwagandha supplement use. By increasing the data related to ashwagandha-induced liver injury, these reports support that consuming ashwagandha supplements is not without its safety concerns.

18.
Cell Rep ; 42(8): 112836, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37471222

RESUMO

Liver sinusoidal endothelial cells (LSECs) rapidly clear lipopolysaccharide (LPS) from the bloodstream and establish intimate contact with immune cells. However, their role in regulating liver inflammation remains poorly understood. We show that LSECs modify their chemokine expression profile driven by LPS or interferon-γ (IFN-γ), resulting in the production of the myeloid- or lymphoid-attracting chemokines CCL2 and CXCL10, respectively, which accumulate in the serum of LPS-challenged animals. Natural killer (NK) cell exposure to LSECs in vitro primes NK cells for higher production of IFN-γ in response to interleukin-12 (IL-12) and IL-18. In livers of LPS-injected mice, NK cells are the major producers of this cytokine. In turn, LSECs require exposure to IFN-γ for CXCL10 expression, and endothelial-specific Cxcl10 gene deletion curtails NK cell accumulation in the inflamed livers. Thus, LSECs respond to both LPS and immune-derived signals and fuel a positive feedback loop of immune cell attraction and activation in the inflamed liver tissue.


Assuntos
Células Endoteliais , Lipopolissacarídeos , Camundongos , Animais , Células Endoteliais/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Células Matadoras Naturais , Fígado/metabolismo , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL
19.
Front Immunol ; 13: 742571, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300331

RESUMO

Group 3 helper Innate Lymphoid Cells (ILC3s) are cytokine-producing lymphocytes that respond to stress signals released during disturbed tissue homeostasis and infection. Upon activation, ILC3s secrete IL-22 and IL-17, and orchestrate immune responses against extracellular pathogens. Their role in cancer remains poorly explored. To determine their anti-cancer effector potential, we co-cultured cytokine-activated human ILC3s with cancer cells of different origins. ILC3s were able to directly respond to tumor cells, resulting in enhanced IFN-γ production. Upon tumor cell encounter, ILC3s maintained expression of the transcription factor RORγt, indicating that ILC3s preserved their identity. ILC3s were able to directly kill both hepatocellular carcinoma and melanoma tumor cells expressing cell-death receptor TRAILR2, through the activation of Caspase-8 in target cells. Moreover, liver-derived cytokine-activated ILC3s also expressed TRAIL and were able to eliminate hepatoblastoma cells. Together, our data reveal that ILC3s can participate in anti-tumor immune response through direct recognition of tumor cells resulting in IFN-γ release and TRAIL-dependent cytotoxicity. Thus, ILC3s might be ancillary players of anti-tumor immunity in tissues, acting as primary responders against transformed or metastasizing cells, which might be further exploited for therapies against cancer.


Assuntos
Linfócitos , Neoplasias , Citocinas , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Interferon gama , Ligante Indutor de Apoptose Relacionado a TNF
20.
EMBO Mol Med ; 14(6): e14121, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35491615

RESUMO

The gut has a specific vascular barrier that controls trafficking of antigens and microbiota into the bloodstream. However, the molecular mechanisms regulating the maintenance of this vascular barrier remain elusive. Here, we identified Caspase-8 as a pro-survival factor in mature intestinal endothelial cells that is required to actively maintain vascular homeostasis in the small intestine in an organ-specific manner. In particular, we find that deletion of Caspase-8 in endothelial cells results in small intestinal hemorrhages and bowel inflammation, while all other organs remained unaffected. We also show that Caspase-8 seems to be particularly needed in lymphatic endothelial cells to maintain gut homeostasis. Our work demonstrates that endothelial cell dysfunction, leading to the breakdown of the gut-vascular barrier, is an active driver of chronic small intestinal inflammation, highlighting the role of the intestinal vasculature as a safeguard of organ function.


Assuntos
Caspase 8 , Células Endoteliais , Mucosa Intestinal , Animais , Caspase 8/metabolismo , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Enterite/enzimologia , Enterite/patologia , Homeostase , Mucosa Intestinal/enzimologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestino Delgado/enzimologia , Intestino Delgado/patologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa