Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Cell ; 81(12): 2656-2668.e8, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33930332

RESUMO

A deficient interferon (IFN) response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been implicated as a determinant of severe coronavirus disease 2019 (COVID-19). To identify the molecular effectors that govern IFN control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human IFN-stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors inhibiting viral entry, RNA binding proteins suppressing viral RNA synthesis, and a highly enriched cluster of endoplasmic reticulum (ER)/Golgi-resident ISGs inhibiting viral assembly/egress. These included broad-acting antiviral ISGs and eight ISGs that specifically inhibited SARS-CoV-2 and SARS-CoV-1 replication. Among the broad-acting ISGs was BST2/tetherin, which impeded viral release and is antagonized by SARS-CoV-2 Orf7a protein. Overall, these data illuminate a set of ISGs that underlie innate immune control of SARS-CoV-2/SARS-CoV-1 infection, which will facilitate the understanding of host determinants that impact disease severity and offer potential therapeutic strategies for COVID-19.


Assuntos
Antígenos CD/genética , Interações Hospedeiro-Patógeno/genética , Fatores Reguladores de Interferon/genética , Interferon Tipo I/genética , SARS-CoV-2/genética , Proteínas Virais/genética , Animais , Antígenos CD/química , Antígenos CD/imunologia , Sítios de Ligação , Linhagem Celular Tumoral , Chlorocebus aethiops , Retículo Endoplasmático/genética , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/virologia , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Regulação da Expressão Gênica , Complexo de Golgi/genética , Complexo de Golgi/imunologia , Complexo de Golgi/virologia , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Fatores Reguladores de Interferon/classificação , Fatores Reguladores de Interferon/imunologia , Interferon Tipo I/imunologia , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/imunologia , Transdução de Sinais , Células Vero , Proteínas Virais/química , Proteínas Virais/imunologia , Internalização do Vírus , Liberação de Vírus/genética , Liberação de Vírus/imunologia , Replicação Viral/genética , Replicação Viral/imunologia
2.
Mol Cell Proteomics ; 21(3): 100194, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35017099

RESUMO

As systems biology approaches to virology have become more tractable, highly studied viruses such as HIV can now be analyzed in new unbiased ways, including spatial proteomics. We employed here a differential centrifugation protocol to fractionate Jurkat T cells for proteomic analysis by mass spectrometry; these cells contain inducible HIV-1 genomes, enabling us to look for changes in the spatial proteome induced by viral gene expression. Using these proteomics data, we evaluated the merits of several reported machine learning pipelines for classification of the spatial proteome and identification of protein translocations. From these analyses, we found that classifier performance in this system was organelle dependent, with Bayesian t-augmented Gaussian mixture modeling outperforming support vector machine learning for mitochondrial and endoplasmic reticulum proteins but underperforming on cytosolic, nuclear, and plasma membrane proteins by QSep analysis. We also observed a generally higher performance for protein translocation identification using a Bayesian model, Bayesian analysis of differential localization experiments, on row-normalized data. Comparative Bayesian analysis of differential localization experiment analysis of cells induced to express the WT viral genome versus cells induced to express a genome unable to express the accessory protein Nef identified known Nef-dependent interactors such as T-cell receptor signaling components and coatomer complex. Finally, we found that support vector machine classification showed higher consistency and was less sensitive to HIV-dependent noise. These findings illustrate important considerations for studies of the spatial proteome following viral infection or viral gene expression and provide a reference for future studies of HIV-gene-dropout viruses.


Assuntos
Infecções por HIV , HIV-1 , Teorema de Bayes , Infecções por HIV/metabolismo , HIV-1/genética , Humanos , Proteoma/metabolismo , Proteômica
3.
PLoS Pathog ; 17(11): e1009409, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843601

RESUMO

The HIV-1 accessory protein Vpu modulates membrane protein trafficking and degradation to provide evasion of immune surveillance. Targets of Vpu include CD4, HLAs, and BST-2. Several cellular pathways co-opted by Vpu have been identified, but the picture of Vpu's itinerary and activities within membrane systems remains incomplete. Here, we used fusion proteins of Vpu and the enzyme ascorbate peroxidase (APEX2) to compare the ultrastructural locations and the proximal proteomes of wild type Vpu and Vpu-mutants. The proximity-omes of the proteins correlated with their ultrastructural locations and placed wild type Vpu near both retromer and ESCRT-0 complexes. Hierarchical clustering of protein abundances across the mutants was essential to interpreting the data and identified Vpu degradation-targets including CD4, HLA-C, and SEC12 as well as Vpu-cofactors including HGS, STAM, clathrin, and PTPN23, an ALIX-like protein. The Vpu-directed degradation of BST-2 was supported by STAM and PTPN23 and to a much lesser extent by the retromer subunits Vps35 and SNX3. PTPN23 also supported the Vpu-directed decrease in CD4 at the cell surface. These data suggest that Vpu directs targets from sorting endosomes to degradation at multi-vesicular bodies via ESCRT-0 and PTPN23.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Infecções por HIV/virologia , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteoma/metabolismo , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Viroporinas/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Infecções por HIV/genética , Infecções por HIV/metabolismo , HIV-1/fisiologia , Células HeLa , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , Microscopia Eletrônica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Transporte Proteico , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteoma/análise , Nexinas de Classificação/química , Nexinas de Classificação/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Viroporinas/genética
4.
PLoS Pathog ; 17(5): e1009519, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34003853

RESUMO

SARS-CoV-2 is the novel coronavirus that is the causative agent of COVID-19, a sometimes-lethal respiratory infection responsible for a world-wide pandemic. The envelope (E) protein, one of four structural proteins encoded in the viral genome, is a 75-residue integral membrane protein whose transmembrane domain exhibits ion channel activity and whose cytoplasmic domain participates in protein-protein interactions. These activities contribute to several aspects of the viral replication-cycle, including virion assembly, budding, release, and pathogenesis. Here, we describe the structure and dynamics of full-length SARS-CoV-2 E protein in hexadecylphosphocholine micelles by NMR spectroscopy. We also characterized its interactions with four putative ion channel inhibitors. The chemical shift index and dipolar wave plots establish that E protein consists of a long transmembrane helix (residues 8-43) and a short cytoplasmic helix (residues 53-60) connected by a complex linker that exhibits some internal mobility. The conformations of the N-terminal transmembrane domain and the C-terminal cytoplasmic domain are unaffected by truncation from the intact protein. The chemical shift perturbations of E protein spectra induced by the addition of the inhibitors demonstrate that the N-terminal region (residues 6-18) is the principal binding site. The binding affinity of the inhibitors to E protein in micelles correlates with their antiviral potency in Vero E6 cells: HMA ≈ EIPA > DMA >> Amiloride, suggesting that bulky hydrophobic groups in the 5' position of the amiloride pyrazine ring play essential roles in binding to E protein and in antiviral activity. An N15A mutation increased the production of virus-like particles, induced significant chemical shift changes from residues in the inhibitor binding site, and abolished HMA binding, suggesting that Asn15 plays a key role in maintaining the protein conformation near the binding site. These studies provide the foundation for complete structure determination of E protein and for structure-based drug discovery targeting this protein.


Assuntos
Amilorida/farmacologia , Tratamento Farmacológico da COVID-19 , Proteínas do Envelope de Coronavírus/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Amilorida/farmacocinética , Animais , Antivirais/farmacologia , Sítios de Ligação/efeitos dos fármacos , COVID-19/virologia , Chlorocebus aethiops , Proteínas do Envelope de Coronavírus/química , Humanos , Canais Iônicos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Domínios Proteicos , Células Vero , Montagem de Vírus/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 116(37): 18571-18577, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31375630

RESUMO

Bacteriophage (phage) have attractive advantages as delivery systems compared with mammalian viruses, but have been considered poor vectors because they lack evolved strategies to confront and overcome mammalian cell barriers to infective agents. We reasoned that improved efficacy of delivery might be achieved through structural modification of the viral capsid to avoid pre- and postinternalization barriers to mammalian cell transduction. We generated multifunctional hybrid adeno-associated virus/phage (AAVP) particles to enable simultaneous display of targeting ligands on the phage's minor pIII proteins and also degradation-resistance motifs on the very numerous pVIII coat proteins. This genetic strategy of directed evolution bestows a next-generation of AAVP particles that feature resistance to fibrinogen adsorption or neutralizing antibodies and ability to escape endolysosomal degradation. This results in superior gene transfer efficacy in vitro and also in preclinical mouse models of rodent and human solid tumors. Thus, the unique functions of our next-generation AAVP particles enable improved targeted gene delivery to tumor cells.


Assuntos
Bacteriófago M13/genética , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Neoplasias/terapia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Bacteriófago M13/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Linhagem Celular Tumoral , Dependovirus/imunologia , Endossomos/imunologia , Endossomos/virologia , Vetores Genéticos/administração & dosagem , Vetores Genéticos/imunologia , Humanos , Lisossomos/imunologia , Lisossomos/virologia , Camundongos , Neoplasias/genética , Oligopeptídeos/genética , Oligopeptídeos/imunologia , Estudo de Prova de Conceito , Ratos , Transdução Genética/métodos , Internalização do Vírus , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31941773

RESUMO

The cellular protein SERINC5 inhibits the infectivity of diverse retroviruses, and its activity is counteracted by the glycosylated Gag (glycoGag) protein of murine leukemia virus (MLV), the S2 protein of equine infectious anemia virus (EIAV), and the Nef protein of human immunodeficiency virus type 1 (HIV-1). Determining the regions within SERINC5 that provide restrictive activity or Nef sensitivity should inform mechanistic models of the SERINC5/HIV-1 relationship. Here, we report that deletion of the conserved sequence EDTEE, which is located within a cytoplasmic loop of SERINC5 and which is reminiscent of an acidic-cluster membrane trafficking signal, increases the sensitivity of SERINC5 to antagonism by Nef, while it has no effect on the intrinsic activity of the protein as an inhibitor of infectivity. These effects correlated with enhanced removal of the ΔEDTEE mutant relative to that of wild-type SERINC5 from the cell surface and with enhanced exclusion of the mutant protein from virions by Nef. Mutational analysis indicated that the acidic residues, but not the threonine, within the EDTEE motif are important for the relative resistance to Nef. Deletion of the EDTEE sequence did not increase the sensitivity of SERINC5 to antagonism by the glycoGag protein of MLV, suggesting that its virologic role is Nef specific. These results are consistent with the reported mapping of the cytoplasmic loop that contains the EDTEE sequence as a general determinant of Nef responsiveness, but they further indicate that sequences inhibitory to as well as supportive of Nef activity reside in this region. We speculate that the EDTEE motif might have evolved to mediate resistance against retroviruses that use Nef-like proteins to antagonize SERINC5.IMPORTANCE Cellular membrane proteins in the SERINC family, especially SERINC5, inhibit the infectivity of retroviral virions. This inhibition is counteracted by retroviral proteins, specifically, HIV-1 Nef, MLV glycoGag, and EIAV S2. One consequence of such a host-pathogen "arms race" is a compensatory change in the host antiviral protein as it evolves to escape the effects of viral antagonists. This is often reflected in a genetic signature, positive selection, which is conspicuously missing in SERINC5 Here we show that despite this lack of genetic evidence, a sequence in SERINC5 nonetheless provides relative resistance to antagonism by HIV-1 Nef.


Assuntos
Proteínas de Membrana/química , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Alelos , Motivos de Aminoácidos , Citoplasma/metabolismo , Deleção de Genes , Glicosilação , Células HEK293 , HIV-1 , Células HeLa , Humanos , Vírus da Anemia Infecciosa Equina/metabolismo , Células Jurkat , Vírus da Leucemia Murina de Moloney/metabolismo , Mutação , Domínios Proteicos , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
8.
Traffic ; 18(8): 545-561, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28504462

RESUMO

HIV-1 Vpu modulates cellular transmembrane proteins to optimize viral replication and provide immune-evasion, triggering ubiquitin-mediated degradation of some targets but also modulating endosomal trafficking to deplete them from the plasma membrane. Interactions between Vpu and the heterotetrameric clathrin adaptor protein (AP) complexes AP-1 and AP-2 have been described, yet the molecular basis and functional roles of such interactions are incompletely defined. To investigate the trafficking signals encoded by Vpu, we fused the cytoplasmic domain (CD) of Vpu to the extracellular and transmembrane domains of the CD8 α-chain. CD8-VpuCD was rapidly endocytosed in a clathrin- and AP-2-dependent manner. Multiple determinants within the Vpu CD contributed to endocytic activity, including phosphoserines of the ß-TrCP binding site and a leucine-based ExxxLV motif. Using recombinant proteins, we confirmed ExxxLV-dependent binding of the Vpu CD to the α/σ2 subunit hemicomplex of AP-2 and showed that this is enhanced by serine-phosphorylation. Remarkably, the Vpu CD also bound directly to the medium (µ) subunits of AP-2 and AP-1; this interaction was dependent on serine-phosphorylation of Vpu and on basic residues in the µ subunits. We propose that the flexibility with which Vpu binds AP complexes broadens the range of cellular targets that it can misdirect to the virus' advantage.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Endocitose , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Fosfosserina/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Células HeLa , Humanos , Fosforilação
9.
J Biol Chem ; 293(40): 15678-15690, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30135209

RESUMO

Protein trafficking in the endosomal system involves the recognition of specific signals within the cytoplasmic domains (CDs) of transmembrane proteins by clathrin adaptors. One such signal is the phosphoserine acidic cluster (PSAC), the prototype of which is in the endoprotease furin. How PSACs are recognized by clathrin adaptors has been controversial. We reported previously that HIV-1 Vpu, which modulates cellular immunoreceptors, contains a PSAC that binds to the µ subunits of clathrin adaptor protein (AP) complexes. Here, we show that the CD of furin binds the µ subunits of AP-1 and AP-2 in a phosphorylation-dependent manner. Moreover, we identify a potential PSAC in a cytoplasmic loop of the cellular transmembrane Serinc3, an inhibitor of the infectivity of retroviruses. The two serines within the PSAC of Serinc3 are phosphorylated by casein kinase II and mediate interaction with the µ subunits in vitro The sites of these serines vary among mammals in a manner suggesting host-pathogen conflict, yet the Serinc3 PSAC seems dispensable for anti-HIV activity and for counteraction by HIV-1 Nef. The CDs of Vpu and furin and the PSAC-containing loop of Serinc3 each bind the µ subunit of AP-2 (µ2) with similar affinities, but they appear to utilize different basic regions on µ2. The Serinc3 loop requires a region previously reported to bind the acidic plasma membrane lipid phosphatidylinositol 4,5-bisphosphate. These data suggest that the PSACs within different proteins recognize different basic regions on the µ surface, providing the potential to inhibit the activity of viral proteins without necessarily affecting cellular protein trafficking.


Assuntos
Complexo 1 de Proteínas Adaptadoras/química , Complexo 2 de Proteínas Adaptadoras/química , Furina/química , HIV-1/genética , Proteínas de Neoplasias/química , Fosfosserina/química , Receptores de Superfície Celular/química , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Furina/genética , Furina/metabolismo , Expressão Gênica , HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/química , Proteínas do Vírus da Imunodeficiência Humana/genética , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Células Jurkat/metabolismo , Células Jurkat/virologia , Cinética , Mamíferos , Glicoproteínas de Membrana , Modelos Moleculares , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfosserina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Vírion/genética , Vírion/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
10.
J Virol ; 90(5): 2486-502, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26676780

RESUMO

UNLABELLED: HIV-1 Vpu decreases the exposure of epitopes within the viral envelope glycoprotein (Env) on the surface of infected cells by downregulating both BST2 and CD4. To test the hypothesis that inhibiting Vpu activity would increase the exposure of these epitopes and sensitize infected cells to antibody-dependent cellular cytotoxicity (ADCC), we treated cells with the Nedd8 activation enzyme (NAE) inhibitor MLN4924, which inhibits the cullin1-based ubiquitin ligase complex coopted by Vpu to degrade cellular targets. Treatment of HeLa cells with MLN4924 or expression of a dominant negative mutant of cullin1 inhibited the Vpu-mediated downregulation of CD4 but not the downregulation of BST2. NAE inhibition also increased the surface exposure of CD4-induced epitopes within Env on HEK293 cells containing an inducible HIV genome, on infected CEM T cells, and on infected primary T cells. In contrast, the Vpu-mediated downregulation of BST2 was substantially inhibited by MLN4924 only when T cells were treated with alpha interferon (IFN-α) to induce high levels of BST2 expression. As reported previously, the absence of vpu or nef and even more so the combined absence of these two genes sensitized infected cells to ADCC. However, NAE inhibition affected ADCC minimally. Paradoxically, even in infected, IFN-treated cells in which NAE inhibition substantially rescued the surface level of BST2, the surface level of Env detected with an antibody recognizing a CD4-independent epitope (2G12) was minimally increased. Mutation of the C-terminal Vpu residue W76, which supports the ability of Vpu to stimulate virion release by displacing BST2 from assembly sites on the plasma membrane by a cullin1-independent mechanism, increased the exposure of Env detected by 2G12 on infected T cells. Thus, inhibiting the displacement function of Vpu together with its ability to degrade CD4 and BST2 may be required to sensitize infected cells to ADCC. IMPORTANCE: Pathogenic viruses encode gene products that enable evasion of host immune surveillance mechanisms. One such mechanism is antibody-dependent cellular cytotoxicity (ADCC), whereby host antibodies bind envelope glycoproteins of the virus that are inserted into the cellular membrane and direct the destruction of infected cells. Targeting pharmacologically the activity of HIV-1 Vpu, which contributes to evasion of ADCC, could potentially sensitize infected cells to this immune surveillance mechanism, an outcome that would have therapeutic implications with respect to the goal of curing HIV-1 infection. The Nedd8 activation enzyme inhibitor MLN4924 blocks the activity of the host ubiquitin ligase that Vpu coopts to direct the degradation of CD4 and BST2. We observed that while MLN4924 partially reverses the activity of Vpu and could become part of a therapeutic approach by virtue of CD4-induced epitope exposure, sufficient Vpu activity as an antagonist of BST2 persists despite this drug to allow escape from ADCC.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Epitopos/imunologia , HIV-1/imunologia , Ubiquitinas/antagonistas & inibidores , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/virologia , Humanos , Proteína NEDD8
11.
Cell Microbiol ; 16(11): 1693-705, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24898821

RESUMO

Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC/EHEC) manipulate many cell processes by injecting effector proteins from the bacteria into the host cell via a Type III secretion system. In this paper we report that the effector protein EspG disrupts recycling endosome function. In particular, we found that following transferrin binding and endocytosis EspG reduces recycling of the transferrin receptor (TfR), the prototypical recycling protein, from an intracellular location to the cell surface, resulting in an accumulation of TfR within the cell. The surface levels of three receptors [TfR, epidermal growth factor receptor (EGFR) and ß1 integrin] were tested and found to be reduced dependent on EspG translocation. Furthermore, disruption of recycling endosome function and the reduced surface presentation of receptors was dependent on the previously reported RabGAP activity and ARF binding ability of EspG. This paper therefore supports the previous hypothesis that EspG acts as an enzyme scaffold perturbing cell signalling events, in this case altering recycling endosome function and cell surface receptor levels during infection.


Assuntos
Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Escherichia coli Êntero-Hemorrágica/fisiologia , Proteínas de Escherichia coli/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Receptores da Transferrina/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Receptores ErbB/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Células HeLa , Humanos , Integrina beta1/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica
12.
J Biol Chem ; 287(43): 35849-59, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22915587

RESUMO

Adeno-associated virus/phage (AAVP) is a gene delivery vector constructed as a hybrid between adeno-associated virus and filamentous phage. Tumor targeting following systemic administration has previously been demonstrated in several in vivo cancer models, with tumor specificity achieved through display of an α(v) integrin-targeting ligand on the capsid. However, high titers of AAVP are required for transduction of large numbers of mammalian cells. This study is the first to investigate the mechanisms involved in entry and intracellular trafficking of AAVP. Using a combination of flow cytometry, confocal, and electron microscopy techniques, together with pharmacological agents, RNAi and dominant negative mutants, we have demonstrated that targeted AAVP endocytosis is both dynamin and clathrin-dependent. Following entry, the majority of AAVP particles are sequestered by the endosomal-lysosomal degradative pathway. Finally, we have demonstrated that disruption of this pathway leads to improved transgene expression by AAVP, thus demonstrating that escape from the late endosomes/lysosomes is a critical step for improving gene delivery by AAVP. These findings have important implications for the rational design of improved AAVP and RGD-targeted vectors.


Assuntos
Clatrina/metabolismo , Dependovirus/fisiologia , Dinaminas/metabolismo , Endocitose , Endossomos/metabolismo , Lisossomos/metabolismo , Internalização do Vírus , Transporte Biológico Ativo , Endossomos/virologia , Células HEK293 , Células HeLa , Humanos , Lisossomos/virologia , Transfecção
13.
Infect Immun ; 81(7): 2598-605, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23649096

RESUMO

Legionella pneumophila is an intracellular bacterium that resides within amoebae and macrophages in a specialized compartment termed the Legionella-containing vacuole (LCV). As well as providing an intracellular niche for replication, the LCV helps to prevent the release of bacterial components into the cytoplasm. Recognition of these components as danger signals by the host activates immune responses leading to clearance of the bacterium. Here, we examined the role of two important virulence factors of L. pneumophila, the potent danger signal flagellin and the translocated Dot/Icm type IVB secretion system effector SdhA, which is crucial to maintain LCV integrity, in the Galleria mellonella infection model. We demonstrate that flagellin expression does not contribute to virulence, replication, or induction of clearance mechanisms. Conversely, SdhA expression is important for virulence. We found that in the absence of SdhA, the LCV in hemocytes showed signs of instability and leakage. Furthermore, in contrast to wild-type L. pneumophila, a ΔsdhA mutant caused a transient depletion of hemocytes and reduced mortality. Analysis of the ΔsdhA mutant in the A/J mouse model also showed a significant replication defect. Together, our data underline the crucial importance of SdhA in infection across different model organisms.


Assuntos
Proteínas de Bactérias/metabolismo , Flavoproteínas/metabolismo , Legionella pneumophila/patogenicidade , Mariposas/microbiologia , Animais , Sistemas de Secreção Bacterianos , Feminino , Flagelina/metabolismo , Hemócitos/metabolismo , Hemócitos/microbiologia , Larva/microbiologia , Legionella pneumophila/metabolismo , Legionelose/microbiologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos C57BL , Modelos Animais , Transporte Proteico , Fatores de Virulência/metabolismo
14.
Viruses ; 15(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36992361

RESUMO

The host transmembrane protein SERINC5 is incorporated into retrovirus particles and inhibits HIV-1 infectivity. The lentiviral Nef protein counteracts SERINC5 by downregulating it from the cell surface and preventing its incorporation into virions. The ability of Nef to antagonize the host factor varies in magnitude between different HIV-1 isolates. After having identified a subtype H nef allele unable to promote HIV-1 infectivity in the presence of SERINC5, we investigated the molecular determinants responsible for the defective counteraction of the host factor. Chimeric molecules with a subtype C Nef highly active against SERINC5 were constructed to locate Nef residues crucial for the activity against SERINC5. An Asn at the base of the C-terminal loop of the defective nef allele was found in place of a highly conserved acidic residue (D/E 150). The conversion of Asn to Asp restored the ability of the defective Nef to downregulate SERINC5 and promote HIV-1 infectivity. The substitution was also found to be crucial for the ability of Nef to downregulate CD4, but not for Nef activities that do not rely on the internalization of receptors from the cell surface, suggesting a general implication in promoting clathrin-mediated endocytosis. Accordingly, bimolecular fluorescence complementation revealed that the conserved acidic residue contributes to the recruitment of AP2 by Nef. Altogether, our results confirm that Nef downregulates SERINC5 and CD4 by engaging a similar machinery and indicates that, in addition to the di-leucine motif, other residues in the C-terminal flexible loop are important for the ability of the protein to sustain clathrin-mediated endocytosis.


Assuntos
Antígenos CD4 , Linfócitos T CD4-Positivos , HIV-1 , Proteínas de Membrana , Produtos do Gene nef do Vírus da Imunodeficiência Humana , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Proteínas de Membrana/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química , Substituição de Aminoácidos , Células HEK293 , Células Jurkat , HIV-1/patogenicidade , Sequência de Aminoácidos , Endocitose , Clatrina , Infecções por HIV , Antígenos CD4/metabolismo , Regulação para Baixo
15.
Virology ; 548: 73-81, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32838948

RESUMO

The host protein SERINC5 inhibits the infectivity of HIV-1 virions in an Env-dependent manner and is counteracted by Nef. The conformation of the Env trimer reportedly correlates with sensitivity to SERINC5. Here, we tested the hypothesis that the "open" conformation of the Env trimer revealed by sensitivity to the V3-loop specific antibody 447-52D directly correlates with sensitivity to SERINC5. Of five Envs tested, SF162 was the most sensitive to neutralization by 447-52D, but it was not the most sensitive to SERINC5; instead the Env of LAI was substantially more sensitive to SERINC5 than all the other Envs. Mutational opening of the trimer by substitution of two tyrosines that mediate interaction between the V2 and V3 loops sensitized the Envs of JRFL and LAI to 447-52D as previously reported, but only BaL was sensitized to SERINC5. These data suggest that trimer "openness" is not sufficient for sensitivity to SERINC5.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Proteínas de Membrana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Anticorpos Neutralizantes/imunologia , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/química , HIV-1/genética , HIV-1/fisiologia , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
16.
Nat Struct Mol Biol ; 27(9): 822-828, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32719457

RESUMO

The HIV-1 Nef protein suppresses multiple immune surveillance mechanisms to promote viral pathogenesis and is an attractive target for the development of novel therapeutics. A key function of Nef is to remove the CD4 receptor from the cell surface by hijacking clathrin- and adaptor protein complex 2 (AP2)-dependent endocytosis. However, exactly how Nef does this has been elusive. Here, we describe the underlying mechanism as revealed by a 3.0-Å crystal structure of a fusion protein comprising Nef and the cytoplasmic domain of CD4 bound to the tetrameric AP2 complex. An intricate combination of conformational changes occurs in both Nef and AP2 to enable CD4 binding and downregulation. A pocket on Nef previously identified as crucial for recruiting class I MHC is also responsible for recruiting CD4, revealing a potential approach to inhibit two of Nef's activities and sensitize the virus to immune clearance.


Assuntos
Antígenos CD4/metabolismo , Infecções por HIV/metabolismo , HIV-1/fisiologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Complexo 2 de Proteínas Adaptadoras/química , Complexo 2 de Proteínas Adaptadoras/metabolismo , Antígenos CD4/química , Cristalografia por Raios X , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química
17.
bioRxiv ; 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33024967

RESUMO

A deficient interferon response to SARS-CoV-2 infection has been implicated as a determinant of severe COVID-19. To identify the molecular effectors that govern interferon control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human interferon stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors that inhibited viral entry, nucleic acid binding proteins that suppressed viral RNA synthesis, and a highly enriched cluster of ER and Golgi-resident ISGs that inhibited viral translation and egress. These included the type II integral membrane protein BST2/tetherin, which was found to impede viral release, and is targeted for immune evasion by SARS-CoV-2 Orf7a protein. Overall, these data define the molecular basis of early innate immune control of viral infection, which will facilitate the understanding of host determinants that impact disease severity and offer potential therapeutic strategies for COVID-19.

18.
Cells ; 8(9)2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480747

RESUMO

The plasma membrane is a site of conflict between host defenses and many viruses. One aspect of this conflict is the host's attempt to eliminate infected cells using innate and adaptive cell-mediated immune mechanisms that recognize features of the plasma membrane characteristic of viral infection. Another is the expression of plasma membrane-associated proteins, so-called restriction factors, which inhibit enveloped virions directly. HIV-1 encodes two countermeasures to these host defenses: The membrane-associated accessory proteins Vpu and Nef. In addition to inhibiting cell-mediated immune-surveillance, Vpu and Nef counteract membrane-associated restriction factors. These include BST-2, which traps newly formed virions at the plasma membrane unless counteracted by Vpu, and SERINC5, which decreases the infectivity of virions unless counteracted by Nef. Here we review key features of these two antiviral proteins, and we review Vpu and Nef, which deplete them from the plasma membrane by co-opting specific cellular proteins and pathways of membrane trafficking and protein-degradation. We also discuss other plasma membrane proteins modulated by HIV-1, particularly CD4, which, if not opposed in infected cells by Vpu and Nef, inhibits viral infectivity and increases the sensitivity of the viral envelope glycoprotein to host immunity.


Assuntos
Antígenos CD/metabolismo , Infecções por HIV/imunologia , HIV-1/patogenicidade , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Proteínas Ligadas por GPI/metabolismo , Infecções por HIV/virologia , HIV-1/metabolismo , Interações Hospedeiro-Patógeno , Humanos
19.
Phytochemistry ; 68(10): 1407-16, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17462679

RESUMO

Two flavonol tetraglycosides comprising a trisaccharide at C-3 and a monosaccharide at C-7 were isolated from the leaves of Styphnolobium japonicum (L.) Schott and characterised as the 3-O-alpha-rhamnopyranosyl(1-->2)[alpha-rhamnopyranosyl(1-->6)]-beta-glucopyranoside-7-O-alpha-rhamnopyranosides of quercetin and kaempferol. The 3-O-alpha-rhamnopyranosyl(1-->2)[alpha-rhamnopyranosyl(1-->6)]-beta-galactopyranoside-7-O-alpha-rhamnopyranoside of kaempferol, the 3-O-alpha-rhamnopyranosyl(1-->2)[alpha-rhamnopyranosyl(1-->6)]-beta-glucopyranosides of kaempferol and quercetin and the 3-O-alpha-rhamnopyranosyl(1-->2)[alpha-rhamnopyranosyl(1-->6)]-beta-galactopyranoside of kaempferol were also obtained from this species for the first time. Some or all of these flavonol tetra- and triglycosides were detected in 17 of 18 specimens of S. japonicum examined from living and herbarium material, although the most abundant flavonoid in the leaves was generally quercetin 3-O-alpha-rhamnopyranosyl(1-->6)-beta-glucopyranoside (rutin). The triglycosides, but not the tetraglycosides, were detected in herbarium specimens of Styphnolobium burseroides M. Sousa, Rudd & Medrano and Styphnolobium monteviridis M. Sousa & Rudd, but specimens of Styphnolobium affine (Torrey & A. Gray) Walp. contained a different profile of flavonol glycosides. The flavonol tetra- and triglycosides of S. japonicum were also present in leaves of Cladrastis kentukea (Dum. Cours.) Rudd, a representative of a genus placed close to Styphnolobium in current molecular phylogenies. An additional constituent obtained from leaves of Styphnolobium japonicum was identified as the maltol derivative, 3-hydroxy-2-methyl-4H-pyran-4-one 3-O-(4'-O-p-coumaroyl-6'-O-(3-hydroxy-3-methylglutaroyl))-beta-glucopyranoside.


Assuntos
Fabaceae/química , Flavonóis/química , Glicosídeos/química , Quempferóis/química , Quercetina/análogos & derivados , Quercetina/química , Fracionamento Químico , Flavonóis/isolamento & purificação , Glicosídeos/isolamento & purificação , Quempferóis/isolamento & purificação , Extratos Vegetais/química , Folhas de Planta/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-16730246

RESUMO

Liquid chromatography-mass spectrometry (LC-MS) analysis of methanol extracts of Oenanthe crocata roots revealed that oenanthotoxin co-eluted with another major polyalkyne, 2,3-dihydro-oenanthotoxin, using the existing high performance liquid chromatography (HPLC) method (isocratic elution from C18 with aqueous methanol) for investigating Oenanthe poisoning. Positive ES or APCI gave [(M+H)-H(2)O](+) and its methanol adduct as major ion species for oenanthotoxin, whereas 2,3-dihydro-oenanthotoxin formed [M+H](+) and its methanol adduct. The two polyalkynes could be chromatographically resolved on C18 by gradient elution with aqueous acetonitrile. This provides superior analysis for oenanthotoxin using HPLC with photodiode array (PDA) detection alone, but for LC-MS/MS aqueous acetonitrile was less suitable due to poor ionisation and, with APCI, an increase in the relative abundance of a [M-1](+) species, which could confuse compound assignment. HPLC-PDA and LC-MS/MS methods using an aqueous acetonitrile or aqueous methanol mobile phase, respectively, were successful when applied to the analysis of the stomach contents of a pony suspected to have eaten O. crocata. Relevant product ion spectra, by ion trap MS/MS, accurate mass data and complete sets of (1)H and (13)C NMR spectral assignments are given for the two compounds.


Assuntos
Alcinos/análise , Cromatografia Líquida de Alta Pressão/métodos , Álcoois Graxos/análise , Doenças dos Cavalos/diagnóstico , Oenanthe/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Alcinos/química , Alcinos/intoxicação , Animais , Enedi-Inos , Álcoois Graxos/química , Álcoois Graxos/intoxicação , Substâncias Perigosas/análise , Substâncias Perigosas/intoxicação , Doenças dos Cavalos/induzido quimicamente , Cavalos , Espectroscopia de Ressonância Magnética , Metanol/química , Estrutura Molecular , Raízes de Plantas/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa