Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nature ; 451(7178): 596-9, 2008 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-18235504

RESUMO

The M2 protein from influenza A virus is a pH-activated proton channel that mediates acidification of the interior of viral particles entrapped in endosomes. M2 is the target of the anti-influenza drugs amantadine and rimantadine; recently, resistance to these drugs in humans, birds and pigs has reached more than 90% (ref. 1). Here we describe the crystal structure of the transmembrane-spanning region of the homotetrameric protein in the presence and absence of the channel-blocking drug amantadine. pH-dependent structural changes occur near a set of conserved His and Trp residues that are involved in proton gating. The drug-binding site is lined by residues that are mutated in amantadine-resistant viruses. Binding of amantadine physically occludes the pore, and might also perturb the pK(a) of the critical His residue. The structure provides a starting point for solving the problem of resistance to M2-channel blockers.


Assuntos
Vírus da Influenza A/química , Proteínas da Matriz Viral/antagonistas & inibidores , Proteínas da Matriz Viral/química , Amantadina/química , Amantadina/metabolismo , Amantadina/farmacologia , Cristalografia por Raios X , Farmacorresistência Viral/genética , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Modelos Moleculares , Estrutura Quaternária de Proteína , Prótons , Relação Estrutura-Atividade , Triptofano/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
2.
Proc Natl Acad Sci U S A ; 106(30): 12283-8, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19590009

RESUMO

The influenza A virus M2 protein (A/M2) is a homotetrameric pH-activated proton transporter/channel that mediates acidification of the interior of endosomally encapsulated virus. This 97-residue protein has a single transmembrane (TM) helix, which associates to form homotetramers that bind the anti-influenza drug amantadine. However, the minimal fragment required for assembly and proton transport in cellular membranes has not been defined. Therefore, the conductance properties of truncation mutants expressed in Xenopus oocytes were examined. A short fragment spanning residues 21-61, M2(21-61), was inserted into the cytoplasmic membrane and had specific, amantadine-sensitive proton transport activity indistinguishable from that of full-length A/M2; an epitope-tagged version of an even shorter fragment, M2(21-51)-FLAG, had specific activity within a factor of 2 of the full-length protein. Furthermore, synthetic fragments including a peptide spanning residues 22-46 were found to transport protons into liposomes in an amantadine-sensitive manner. In addition, the functionally important His-37 residue pK(a) values are highly perturbed in the tetrameric form of the protein, a property conserved in the TM peptide and full-length A/M2 in both micelles and bilayers. These data demonstrate that the determinants for folding, drug binding, and proton translocation are packaged in a remarkably small peptide that can now be studied with confidence.


Assuntos
Canais Iônicos/fisiologia , Fragmentos de Peptídeos/fisiologia , Proteínas da Matriz Viral/fisiologia , Amantadina/farmacologia , Sequência de Aminoácidos , Animais , Transporte Biológico/efeitos dos fármacos , Dopaminérgicos/farmacologia , Feminino , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Canais Iônicos/química , Canais Iônicos/genética , Potenciais da Membrana/efeitos dos fármacos , Microinjeções , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Multimerização Proteica , Prótons , Homologia de Sequência de Aminoácidos , Termodinâmica , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Xenopus
3.
Structure ; 16(7): 1067-76, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18611380

RESUMO

We explore the interplay between amino acid sequence, thermodynamic stability, and functional fitness in the M2 proton channel of influenza A virus. Electrophysiological measurements show that drug-resistant mutations have minimal effects on M2's specific activity, and suggest that resistance is achieved by altering a binding site within the pore rather than a less direct allosteric mechanism. In parallel, we measure the effects of these mutations on the free energy of assembling the homotetrameric transmembrane pore from monomeric helices in micelles and bilayers. Although there is no simple correlation between the evolutionary fitness of the mutants and their stability, all variants formed more stable tetramers in bilayers, and the least-fit mutants showed the smallest increase in stability upon moving from a micelle to a bilayer environment. We speculate that the folding landscape of a micelle is rougher than that of a bilayer, and more accommodating of conformational variations in nonoptimized mutants.


Assuntos
Farmacorresistência Viral/genética , Canais Iônicos/química , Prótons , Proteínas da Matriz Viral/química , Amantadina/farmacologia , Sequência de Aminoácidos , Animais , Antivirais/farmacologia , Células Cultivadas , Dissulfetos/química , Evolução Molecular , Canais Iônicos/genética , Canais Iônicos/metabolismo , Bicamadas Lipídicas/química , Micelas , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Técnicas de Patch-Clamp , Fosfolipídeos/química , Termodinâmica , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Xenopus laevis
4.
J Mol Biol ; 347(1): 169-79, 2005 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-15733926

RESUMO

The driving forces behind the folding processes of integral membrane proteins after insertion into the bilayer, is currently under debate. The M2 protein from the influenza A virus is an ideal system to study lateral association of transmembrane helices. Its proton selective channel is essential for virus functioning and a target of the drug amantadine. A 25 residue transmembrane fragment of M2, M2TM, forms a four-helix bundle in vivo and in various detergents and phospholipid bilayers. Presented here are the energetic consequences for mutations made to the helix/helix interfaces of the M2TM tetramer. Analytical ultracentrifugation has been used to determine the effect of ten single-site mutations, to either alanine or phenylalanine, on the oligomeric state and the free energy of M2TM in the absence and the presence of amantadine. It was expected that many of these mutations would perturb the M2TM stability and tetrameric integrity. Interestingly, none of the mutations destabilize tetramerization. This finding suggests that M2 sacrifices stability to preserve its functions, which require rapid and specific interchange between distinct conformations involved in gating and proton conduction. Mutations might therefore restrict the full range of conformations by stabilizing a given native or non-native conformational state. In order to assess one specific conformation of the tetramer, we measured the binding of amantadine to the resting state of the channel, and examined the overall free energy of assembly of the amantadine bound tetramer. All of the mutations destabilized amantadine binding or were isoenergetic. We also find that large to small residue changes destabilize the amantadine bound tetramer whereas mutations to side-chains of similar volume stabilize this conformation. A structural model of the amantadine bound state of M2TM was generated using a novel protocol that optimizes a structure for an ensemble of neutral and disruptive mutations. The model structure is consistent with the mutational data.


Assuntos
Canais Iônicos/química , Estrutura Quaternária de Proteína , Prótons , Proteínas da Matriz Viral/química , Amantadina/metabolismo , Antivirais/metabolismo , Membrana Celular/metabolismo , Canais Iônicos/metabolismo , Modelos Moleculares , Mutação , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Ultracentrifugação , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
5.
Biophys J ; 87(5): 3421-9, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15315956

RESUMO

A peptide containing glycine at a and d positions of a heptad motif was synthesized to investigate the possibility that membrane-soluble peptides with a Gly-based, left-handed helical packing motif would associate. Based on analytical ultracentrifugation in C14-betaine detergent micelles, the peptide did associate in a monomer-dimer equilibrium, although the association constant was significantly less than that reported for the right-handed dimer of the glycophorin A transmembrane peptide in similar detergents. Fluorescence resonance energy transfer (FRET) experiments conducted on peptides labeled at their N-termini with either tetramethylrhodamine (TMR) or 7-nitrobenz-2-oxa-1,3-diazole (NBD) also indicated association. However, analysis of the FRET data using the usual assumption of complete quenching for NBD-TMR pairs in the dimer could not be quantitatively reconciled with the analytical ultracentrifugation-measured dimerization constant. This led us to develop a general treatment for the association of helices to either parallel or antiparallel structures of any aggregation state. Applying this treatment to the FRET data, constraining the dimerization constant to be within experimental uncertainty of that measured by analytical ultracentrifugation, we found the data could be well described by a monomer-dimer equilibrium with only partial quenching of the dimer, suggesting that the helices are most probably antiparallel. These results also suggest that a left-handed Gly heptad repeat motif can drive membrane helix association, but the affinity is likely to be less strong than the previously reported right-handed motif described for glycophorin A.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Glicina/química , Proteínas de Membrana/química , Modelos Químicos , Peptídeos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Dimerização , Dados de Sequência Molecular , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa