Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Ecol ; 28(14): 3395-3412, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31177610

RESUMO

Widespread species that exhibit both high gene flow and the capacity to occupy heterogeneous environments make excellent models for examining local selection processes along environmental gradients. Here we evaluate the influence of temperature and landscape variables on genetic connectivity and signatures of local adaptation in Phaulacridium vittatum, a widespread agricultural pest grasshopper, endemic to Australia. With sampling across a 900-km latitudinal gradient, we genotyped 185 P. vittatum from 19 sites at 11,408 single nucleotide polymorphisms (SNPs) using ddRAD sequencing. Despite high gene flow across sites (pairwise FST  = 0.0003-0.08), landscape genetic resistance modelling identified a positive nonlinear effect of mean annual temperature on genetic connectivity. Urban areas and water bodies had a greater influence on genetic distance among sites than pasture, agricultural areas and forest. Together, FST outlier tests and environmental association analysis (EAA) detected 242 unique SNPs under putative selection, with the highest numbers associated with latitude, mean annual temperature and body size. A combination of landscape genetic connectivity analysis together with EAA identified mean annual temperature as a key driver of both neutral gene flow and environmental selection processes. Gene annotation of putatively adaptive SNPs matched with gene functions for olfaction, metabolic detoxification and ultraviolet light shielding. Our results imply that this widespread agricultural pest has the potential to spread and adapt under shifting temperature regimes and land cover change.


Assuntos
Adaptação Fisiológica/genética , Gafanhotos/genética , Animais , Teorema de Bayes , Meio Ambiente , Frequência do Gene/genética , Geografia , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Temperatura
2.
Anim Cogn ; 21(2): 235-243, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29352457

RESUMO

Vocal characteristics can vary among and within populations. In species with geographic variation in the structure of vocalizations, individuals may have the ability to discriminate between calls from local and non-local individuals. The ability to distinguish differences in acoustic signals is likely to have a significant influence on the outcome of social interactions between individuals, including potentially mate selection and breeding success. Pinnipeds (seals, fur seals, sea lions and walruses) are highly vocal yet the Australian sea lion (Neophoca cinerea) is the only eared seal known to show geographic vocal variation in male barks. Barks are produced in many social interactions and encode sufficient information for both individual and colony identity to be discriminable. Yet until now, whether males could themselves discriminate these bark differences was unclear. We performed playback experiments in four breeding colonies to investigate whether males can discriminate local from non-local barks. Overall, males responded more strongly to barks from their own colony compared to barks from other colonies regardless of whether those other colonies were close or distant. Competition for females is high in Australian sea lions, but mating periods are asynchronous across colonies. The ability to correctly assess whether a male is from the same colony, thus representing a potential competitor for mates, or merely a visitor from elsewhere, may influence how males interact with others. Given the high cost of fighting, the ability to discern competitors may influence the nature of male-male interactions and ultimately influence how they allocate reproductive effort.


Assuntos
Leões-Marinhos/fisiologia , Vocalização Animal/fisiologia , Estimulação Acústica , Animais , Austrália , Geografia , Masculino , Comportamento Sexual Animal , Comportamento Social
3.
J Insect Sci ; 18(6)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30508202

RESUMO

Invertebrate pests often show high morphological variation and wide environmental tolerances. Knowledge of how phenotypic variation is associated with environmental heterogeneity can elucidate the processes underpinning these patterns. Here we examine morphological variation and relative abundance along environmental gradients in a widespread agricultural pest, native to Australia, the wingless grasshopper Phaulacridium vittatum (Sjöstedt). We test for correlations between body size, wing presence, and stripe polymorphism with environmental variables. Using multiple regression and mixed-effects modeling, body size and stripe polymorphism were positively associated with solar radiation, and wing presence was positively associated with foliage projective cover (FPC). There were no associations between body size or morphological traits with relative abundance. However, relative abundance was positively associated with latitude, soil moisture, and wind speed, but was negatively associated with FPC. Therefore, sites with low relative abundance and high forest cover were more likely to contain winged individuals. Overall, our results suggest that environmental and climatic conditions strongly influence the relative abundance and the distribution of morphotypes in P. vittatum, which is likely to affect dispersal and fitness in different landscapes. This knowledge is useful for informing how environmental change might influence the future spread and impact of this agricultural pest.


Assuntos
Meio Ambiente , Gafanhotos/anatomia & histologia , Agricultura , Animais , Austrália , Fenótipo , Densidade Demográfica
4.
J Hered ; 108(5): 524-534, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28863450

RESUMO

Knowledge of genetic structure, geographic distance and environmental heterogeneity can be used to identify environmental features and natural history traits that influence dispersal and gene flow. Foraging mode is a trait that might predict dispersal capacity in snakes, because actively foragers typically have greater movement rates than ambush predators. Here, we test the hypothesis that 2 actively foraging snakes have higher levels of gene flow than 2 ambush predators. We evaluated these 4 co-distributed species of snakes in the Brazilian Amazon. Snakes were sampled along an 880 km transect from the central to the southwest of the Amazon basin, which covered a mosaic of vegetation types and seasonal differences in climate. We analyzed thousands of single nucleotide polymorphisms to compare patterns of neutral gene flow based on isolation by geographic distance (IBD) and environmental resistance (IBR). We show that IBD and IBR were only evident in ambush predators, implying lower levels of dispersal than the active foragers. Therefore, gene flow was high enough in the active foragers analyzed here to prevent any build-up of spatial genotypic structure with respect to geographic distance and environmental heterogeneity.


Assuntos
Fluxo Gênico , Comportamento Predatório/fisiologia , Serpentes/genética , Distribuição Animal/fisiologia , Animais , Brasil , Meio Ambiente , Serpentes/fisiologia
5.
J Hered ; 104(3): 371-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505312

RESUMO

Elasmobranchs (sharks and rays) show an amazing diversity of reproductive modes and behaviors. Multiple paternity (MP) has been identified in all species where more than 1 litter has been investigated; yet neither direct nor indirect benefits from MP have been determined in elasmobranchs. This has led to the suggestion that MP in this group may simply be a product of convenience polyandry with variation in the frequency of MP driven by differences in mate encounter rates. Here, we use molecular markers to investigate polyandry and MP in 2 closely related and commercially important species of shark, Mustelus antarcticus and Mustelus lenticulatus. In total, 328 M. antarcticus embryos originating from 29 different mothers and 75 M. lenticulatus embryos originating from 19 different mothers were genotyped using 8 microsatellite loci. We find that MP occurs in both species. However, in both species, the majority of litters were sired by a single father. Our results do not support increased fecundity per se as a driver of MP. Further, our results do not suggest that high population densities with resulting high mate encounter rates generated by breeding aggregations necessarily lead to high frequencies of MP. Importantly, we note evidence of reproductive skew within polyandrous litters, which is a predicted outcome of postcopulatory mechanisms.


Assuntos
Comportamento Sexual Animal , Tubarões/genética , Animais , Austrália , Embrião não Mamífero , Feminino , Fertilidade/genética , Masculino , Paternidade , Gravidez
6.
Mol Phylogenet Evol ; 64(3): 697-703, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22659513

RESUMO

The shark genus Mustelus is speciose, commercially important and systematically troublesome. We use a molecular approach combining inter and intra-specific data to investigate Mustelus species in the central Indo-Pacific and Australasia. Our analysis supports two Mustelus clades, one comprising species with no white spots and a placental reproductive mode and a second clade of white spotted, aplacental species. Levels of genetic divergence are low, especially among species in the white spotted, aplacental clade and this should be taken into account when employing molecular data to delineate species. Our data support the hypothesis of a radiation following dispersal from a northern hemisphere ancestor. Molecular dating suggests that localised speciation in Australasia may have occurred during the Pleistocene. We propose that some of the difficulties associated with Mustelus systematics relate to a recent radiation, particularly in the Australasian region.


Assuntos
Especiação Genética , Filogenia , Filogeografia , Tubarões/classificação , Animais , Australásia , Núcleo Celular/genética , DNA Mitocondrial/genética , Funções Verossimilhança , Oceano Pacífico , Análise de Sequência de DNA , Tubarões/genética
7.
Trends Ecol Evol ; 35(2): 137-148, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31699413

RESUMO

Across animal societies, individuals invest time and energy in social interactions. The social landscape that emerges from these interactions can then generate barriers that limit the ability of individuals to disperse to, and reproduce in, groups or populations. Therefore, social barriers can contribute to the difference between the physical capacity for movement through the habitat and subsequent gene flow. We call this contributing effect 'social resistance'. We propose that social resistance can act as an agent of selection on key life-history strategies and promote the evolution of social strategies that facilitate effective dispersal. By linking landscape genetics and social behaviour, the social resistance hypothesis generates predictions integrating dispersal, connectivity, and life-history evolution.


Assuntos
Ecossistema , Fluxo Gênico , Comportamento Social , Animais
8.
J Microbiol Methods ; 72(1): 103-6, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18054097

RESUMO

Bioprospecting for novel antimicrobials increasingly relies on extremely small samples unsuitable for conventional bulk extraction and assay. We developed a microtitre plate assay for minimal amounts of test materials which is rapid, extremely sensitive, allows time-course analysis and reduces false negatives. Developed for the analyses of antimicrobial sensitivity and resistance, the technique is appropriate for assays where source materials are scarce.


Assuntos
Antibacterianos/análise , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Ampicilina/farmacologia , Animais , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Concentração Inibidora 50 , Insetos/química , Plasmídeos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estreptomicina/farmacologia
9.
PeerJ ; 6: e5424, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123719

RESUMO

The distribution of biodiversity within the Amazon basin is often structured by sharp environmental boundaries, such as large rivers. The Amazon region is also characterized by subtle environmental clines, but how they might affect the distributions and abundance of organisms has so far received less attention. Here, we test whether soil and forest characteristics are associated with the occurrence and relative abundance of the forest-floor dwelling Aromobatid frog, Allobates femoralis. We applied a structured sampling regime along an 880 km long transect through forest of different density. High detection probabilities were estimated for A. femoralis in each of the sampling modules. Using generalized linear mixed-effects models and simple linear regressions that take detectability into account, we show that A. femoralis is more abundant in open forests than in dense forests. The presence and relative abundance of A. femoralis is also positively associated with clay-rich soils, which are poorly drained and therefore likely support the standing water bodies required for reproduction. Taken together, we demonstrate that relatively easy-to-measure environmental features can explain the distribution and abundance of a widespread species at different spatial scales. Such proxies are of clear value to ecologists and conservation managers working in large inaccessible areas such as the Amazon basin.

10.
Nat Ecol Evol ; 2(6): 1009-1018, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29686233

RESUMO

The lifetime monogamy hypothesis claims that the evolution of permanently unmated worker castes always requires maximal full-sibling relatedness to be established first. The long-lived diploid ambrosia beetle Austroplatypus incompertus (Schedl) is known to be highly social, but whether it has lifetime sterile castes has remained unclear. Here we show that the gallery systems of this beetle inside the heartwood of live Eucalyptus trees are always inhabited by a single core family, consisting of a lifetime-inseminated mother, permanently unmated daughter workers, and immatures that are always full siblings to each other and their adult caretakers. Overall sex ratios are even. Males always disperse and only survive as stored sperm, but female offspring either disperse to mate and found their own colony or assume unmated worker roles, probably surviving for many years without any reproductive potential because tarsal loss precludes later dispersal. A well-supported Platypodinae phylogeny has allowed us to infer that parental monogamy evolved before a lifetime-unmated worker caste emerged, confirming the prediction that monogamy and full-sibling relatedness are necessary conditions for the evolution of such workers. The initially very challenging but ultimately long-term stable nesting habitat in live trees appears to have provided the crucial benefit/cost factor for maintaining selection for permanently sterile workers after strict monogamy and lifetime sperm storage had become established in this curculionid coleopteran lineage.


Assuntos
Espermatozoides/fisiologia , Gorgulhos/fisiologia , Animais , Feminino , Longevidade , Masculino , New South Wales , Reprodução , Comportamento Social , Vitória
11.
PeerJ ; 6: e5628, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30280020

RESUMO

Mechanisms generating and maintaining biodiversity at regional scales may be evaluated by quantifying ß-diversity along environmental gradients. Differences in assemblages result in biotic complementarities and redundancies among sites, which may be quantified through multi-dimensional approaches incorporating taxonomic ß-diversity (TBD), functional ß-diversity (FBD) and phylogenetic ß-diversity (PBD). Here we test the hypothesis that snake TBD, FBD and PBD are influenced by environmental gradients, independently of geographic distance. The gradients tested are expected to affect snake assemblages indirectly, such as clay content in the soil determining primary production and height above the nearest drainage determining prey availability, or directly, such as percentage of tree cover determining availability of resting and nesting sites, and climate (temperature and precipitation) causing physiological filtering. We sampled snakes in 21 sampling plots, each covering five km2, distributed over 880 km in the central-southern Amazon Basin. We used dissimilarities between sampling sites to quantify TBD, FBD and PBD, which were response variables in multiple-linear-regression and redundancy analysis models. We show that patterns of snake community composition based on TBD, FBD and PBD are associated with environmental heterogeneity in the Amazon. Despite positive correlations between all ß-diversity measures, TBD responded to different environmental gradients compared to FBD and PBD. Our findings suggest that multi-dimensional approaches are more informative for ecological studies and conservation actions compared to a single diversity measure.

12.
Ecol Evol ; 7(1): 48-57, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28070274

RESUMO

Establishing corridors of connecting habitat has become a mainstay conservation strategy to maintain gene flow and facilitate climate-driven range shifts. Yet, little attention has been given to ascertaining the extent to which corridors will benefit philopatric species, which might exhibit localized adaptation. Measures of genetic connectivity and adaptive genetic variation across species' ranges can help fill this knowledge gap. Here, we characterized the spatial genetic structure of Cunningham's skink (Egernia cunninghami), a philopatric species distributed along Australia's Great Dividing Range, and assessed evidence of localized adaptation. Analysis of 4,274 SNPs from 94 individuals sampled at four localities spanning 500 km and 4° of latitude revealed strong genetic structuring at neutral loci (mean FST ± SD = 0.603 ± 0.237) among the localities. Putatively neutral SNPs and those under divergent selection yielded contrasting spatial patterns, with the latter identifying two genetically distinct clusters. Given low genetic connectivity of the four localities, we suggest that the natural movement rate of this species is insufficient to keep pace with spatial shifts to its climate envelope, irrespective of habitat availability. In addition, our finding of localized adaptation highlights the risk of outbreeding depression should the translocation of individuals be adopted as a conservation management strategy.

13.
Sci Rep ; 7(1): 12979, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021590

RESUMO

Climate change vulnerability assessment (CCVA) has become a mainstay conservation decision support tool. CCVAs are recommended to incorporate three elements of vulnerability - exposure, sensitivity and adaptive capacity - yet, lack of data frequently leads to the latter being excluded. Further, weighted or unweighted scoring schemes, based on expert opinion, may be applied. Comparisons of these approaches are rare. In a CCVA for 17 Australian lizard species, we show that membership within three vulnerability categories (low, medium and high) generally remained similar regardless of the framework or scoring scheme. There was one exception however, where, under the warm/dry scenario for 2070, including adaptive capacity lead to five fewer species being classified as highly vulnerable. Two species, Eulamprus leuraensis and E. kosciuskoi, were consistently ranked the most vulnerable, primarily due to projected losses in climatically suitable habitat, narrow thermal tolerance and specialist habitat requirements. Our findings provide relevant information for prioritizing target species for conservation and choosing appropriate conservation actions. We conclude that for the species included in this study, the framework and scoring scheme used had little impact on the identification of the most vulnerable species. We caution, however, that this outcome may not apply to other taxa or regions.


Assuntos
Adaptação Fisiológica , Mudança Climática , Animais , Lagartos/fisiologia , Especificidade da Espécie
14.
PLoS One ; 12(9): e0184193, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28873398

RESUMO

The ability of species to track their climate niche is dependent on their dispersal potential and the connectivity of the landscape matrix linking current and future suitable habitat. However, studies modeling climate-driven range shifts rarely address the movement of species across landscapes realistically, often assuming "unlimited" or "no" dispersal. Here, we incorporate dispersal rate and landscape connectivity with a species distribution model (Maxent) to assess the extent to which the Cunningham's skink (Egernia cunninghami) may be capable of tracking spatial shifts in suitable habitat as climate changes. Our model was projected onto four contrasting, but equally plausible, scenarios describing futures that are (relative to now) hot/wet, warm/dry, hot/with similar precipitation and warm/wet, at six time horizons with decadal intervals (2020-2070) and at two spatial resolutions: 1 km and 250 m. The size of suitable habitat was projected to decline 23-63% at 1 km and 26-64% at 250 m, by 2070. Combining Maxent output with the dispersal rate of the species and connectivity of the intervening landscape matrix showed that most current populations in regions projected to become unsuitable in the medium to long term, will be unable to shift the distance necessary to reach suitable habitat. In particular, numerous populations currently inhabiting the trailing edge of the species' range are highly unlikely to be able to disperse fast enough to track climate change. Unless these populations are capable of adaptation they are likely to be extirpated. We note, however, that the core of the species distribution remains suitable across the broad spectrum of climate scenarios considered. Our findings highlight challenges faced by philopatric species and the importance of adaptation for the persistence of peripheral populations under climate change.


Assuntos
Migração Animal/fisiologia , Mudança Climática , Ecossistema , Lagartos/fisiologia , Animais , Austrália , Conservação dos Recursos Naturais , Modelos Teóricos , Especificidade da Espécie
15.
PLoS One ; 10(6): e0128874, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26061141

RESUMO

Knowledge of genetic structure and patterns of connectivity is valuable for implementation of effective conservation management. The arid zone of Australia contains a rich biodiversity, however this has come under threat due to activities such as altered fire regimes, grazing and the introduction of feral herbivores and predators. Suitable habitats for many species can be separated by vast distances, and despite an apparent lack of current geographical barriers to dispersal, habitat specialisation, which is exhibited by many desert species, may limit connectivity throughout this expansive region. We characterised the genetic structure and differentiation of the great desert skink (Liopholis kintorei), which has a patchy, but widespread distribution in the western region of the Australian arid zone. As a species of cultural importance to local Aboriginal groups and nationally listed as Vulnerable, it is a conservation priority for numerous land managers in central Australia. Analysis of mitochondrial ND4 sequence data and ten nuclear microsatellite loci across six sampling localities through the distribution of L. kintorei revealed considerable differentiation among sites, with mitochondrial FST and microsatellite F'ST ranging from 0.047-0.938 and 0.257-0.440, respectively. The extent of differentiation suggests three main regions that should be managed separately, in particular the southeastern locality of Uluru. Current genetic delineation of these regions should be maintained if future intervention such as translocation or captive breeding is to be undertaken.


Assuntos
Variação Genética , Lagartos/genética , Animais , Austrália , Humanos , Dados de Sequência Molecular
16.
BMC Res Notes ; 7: 607, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25189128

RESUMO

BACKGROUND: Noack's leaf-nosed bat, Hipposideros ruber, is a cryptic species within the Hipposideros caffer species complex. Despite a widespread distribution in Africa and being host to potentially zoonotic viruses, the genetic structure and ecology of H. ruber is poorly known. Here we describe the development of 11 novel polymorphic microsatellite loci to facilitate the investigation of genetic structure. FINDINGS: We selected 20 microsatellite sequences identified from high throughput sequence reads and PCR amplified these for 38 individuals, yielding 11 consistently amplifying and scorable loci. The number of alleles per locus ranged from two to 12, and observed heterozygosities from 0.00 to 0.865. No evidence of linkage disequilibrium was observed, and nine of the markers showed no departure from Hardy-Weinberg equilibrium. We demonstrate successful amplification in two closely related species and two divergent lineages of the H. caffer species complex. CONCLUSIONS: These new markers will provide a valuable tool to investigate genetic structure in the poorly understood Hipposideros caffer species complex.


Assuntos
Quirópteros/genética , Repetições de Microssatélites/genética , Animais , Sequência de Bases , Primers do DNA , Heterozigoto , Dados de Sequência Molecular
17.
PLoS One ; 9(8): e105453, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147930

RESUMO

Studies leading to decision-making for environmental licensing often fail to provide accurate estimates of diversity. Measures of snake diversity are regularly obtained to assess development impacts in the rainforests of the Amazon Basin, but this taxonomic group may be subject to poor detection probabilities. Recently, the Brazilian government tried to standardize sampling designs by the implementation of a system (RAPELD) to quantify biological diversity using spatially-standardized sampling units. Consistency in sampling design allows the detection probabilities to be compared among taxa, and sampling effort and associated cost to be evaluated. The cost effectiveness of detecting snakes has received no attention in Amazonia. Here we tested the effects of reducing sampling effort on estimates of species densities and assemblage composition. We identified snakes in seven plot systems, each standardised with 14 plots. The 250 m long centre line of each plot followed an altitudinal contour. Surveys were repeated four times in each plot and detection probabilities were estimated for the 41 species encountered. Reducing the number of observations, or the size of the sampling modules, caused significant loss of information on species densities and local patterns of variation in assemblage composition. We estimated the cost to find a snake as $ 120 U.S., but general linear models indicated the possibility of identifying differences in assemblage composition for half the overall survey costs. Decisions to reduce sampling effort depend on the importance of lost information to target-issues, and may not be the preferred option if there is the potential for identifying individual snake species requiring specific conservation actions. However, in most studies of human disturbance on species assemblages, it is likely to be more cost-effective to focus on other groups of organisms with higher detection probabilities.


Assuntos
Biodiversidade , Custos e Análise de Custo , Densidade Demográfica , Serpentes , Animais , Brasil , Geografia , Floresta Úmida
18.
PLoS One ; 6(7): e21763, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21754998

RESUMO

Microbial diseases are important selective agents in social insects and one major defense mechanism is the secretion of cuticular antimicrobial compounds. We hypothesized that given differences in group size, social complexity, and nest type the secretions of these antimicrobials will be under different selective pressures. To test this we extracted secretions from nine wasp species of varying social complexity and nesting habits and assayed their antimicrobial compounds against cultures of Staphylococcus aureus. These data were then combined with phylogenetic data to provide an evolutionary context. Social species showed significantly higher (18x) antimicrobial activity than solitary species and species with paper nests showed significantly higher (11x) antimicrobial activity than those which excavated burrows. Mud-nest species showed no antimicrobial activity. Solitary, burrow-provisioning wasps diverged at more basal nodes of the phylogenetic trees, while social wasps diverged from the most recent nodes. These data suggest that antimicrobial defences may have evolved in response to ground-dwelling pathogens but the most important variable leading to increased antimicrobial strength was increase in group size and social complexity.


Assuntos
Anti-Infecciosos/imunologia , Evolução Biológica , Comportamento de Nidação/fisiologia , Comportamento Social , Vespas/imunologia , Vespas/microbiologia , Animais , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Comportamento de Nidação/efeitos dos fármacos , Filogenia , Staphylococcus aureus/efeitos dos fármacos , Vespas/efeitos dos fármacos
19.
Mol Ecol Resour ; 8(4): 923-5, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21585931

RESUMO

We report on the isolation and characterization of eight microsatellite markers for the coppertail skink (Ctenotus taeniolatus). From a sample of 27 individuals, the number of alleles per locus ranged from seven to 13 and observed and expected heterozygosities ranged from 0.714 to 0.818 and from 0.738 to 0.899, respectively. These loci will be used to assess anthropogenic disturbance on coppertail skink populations. These are the first microsatellites reported for the genus Ctenotus, despite being the most speciose genus of lizards in Australia.

20.
J Hered ; 97(6): 607-11, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17150982

RESUMO

Population numbers of many shark species are declining rapidly around the world. Despite the commercial and conservation significance, little is known on even the most fundamental aspects of their population biology. Data collection that relies on direct observation can be logistically challenging with sharks. Consequently, molecular methods are becoming increasingly important to obtain knowledge that is critical for conservation and management. Here we describe an amplified fragment length polymorphism method that can be applied universally to sharks to identify highly informative genome-wide polymorphisms from 12 primer pairs. We demonstrate the value of our method on 15 divergent shark species within the superorder Galeomorphii, including endangered species which are notorious for low levels of genetic diversity. Both the endangered sand tiger shark (Carcharodon taurus, N = 18) and the great white shark (Carcharodon carcharias, N = 7) displayed relatively high levels of allelic diversity. A total of 59 polymorphic loci (H(e) = 0.373) and 78 polymorphic loci (H(e) = 0.316) were resolved in C. taurus and C. carcharias, respectively. Results from other sharks (e.g., Orectolobus ornatus, Orectolobus sp., and Galeocerdo cuvier) produced remarkably high numbers of polymorphic loci (106, 94, and 86, respectively) from a limited sample size of only 2. A major constraint to obtaining much needed genetic data from sharks is the time-consuming process of developing molecular markers. Here we demonstrate the general utility of a technique that provides large numbers of informative loci in sharks.


Assuntos
Polimorfismo Genético , Técnica de Amplificação ao Acaso de DNA Polimórfico , Tubarões/genética , Animais , Marcadores Genéticos , Genoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa