Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7965): 480-483, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198479

RESUMO

In the first billion years after the Big Bang, sources of ultraviolet (UV) photons are believed to have ionized intergalactic hydrogen, rendering the Universe transparent to UV radiation. Galaxies brighter than the characteristic luminosity L* (refs. 1,2) do not provide enough ionizing photons to drive this cosmic reionization. Fainter galaxies are thought to dominate the photon budget; however, they are surrounded by neutral gas that prevents the escape of the Lyman-α photons, which has been the dominant way to identify them so far. JD1 was previously identified as a triply-imaged galaxy with a magnification factor of 13 provided by the foreground cluster Abell 2744 (ref. 3), and a photometric redshift of z ≈ 10. Here we report the spectroscopic confirmation of this very low luminosity (≈0.05 L*) galaxy at z = 9.79, observed 480 Myr after the Big Bang, by means of the identification of the Lyman break and redward continuum, as well as multiple ≳4σ emission lines, with the Near-InfraRed Spectrograph (NIRSpec) and Near-InfraRed Camera (NIRCam) instruments. The combination of the James Webb Space Telescope (JWST) and gravitational lensing shows that this ultra-faint galaxy (MUV = -17.35)-with a luminosity typical of the sources responsible for cosmic reionization-has a compact (≈150 pc) and complex morphology, low stellar mass (107.19 M⊙) and subsolar (≈0.6 Z⊙) gas-phase metallicity.

2.
Nature ; 603(7903): 815-818, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35354998

RESUMO

Galaxy clusters magnify background objects through strong gravitational lensing. Typical magnifications for lensed galaxies are factors of a few but can also be as high as tens or hundreds, stretching galaxies into giant arcs1,2. Individual stars can attain even higher magnifications given fortuitous alignment with the lensing cluster. Recently, several individual stars at redshifts between approximately 1 and 1.5 have been discovered, magnified by factors of thousands, temporarily boosted by microlensing3-6. Here we report observations of a more distant and persistent magnified star at a redshift of 6.2 ± 0.1, 900 million years after the Big Bang. This star is magnified by a factor of thousands by the foreground galaxy cluster lens WHL0137-08 (redshift 0.566), as estimated by four independent lens models. Unlike previous lensed stars, the magnification and observed brightness (AB magnitude, 27.2) have remained roughly constant over 3.5 years of imaging and follow-up. The delensed absolute UV magnitude, -10 ± 2, is consistent with a star of mass greater than 50 times the mass of the Sun. Confirmation and spectral classification are forthcoming from approved observations with the James Webb Space Telescope.

4.
Science ; 384(6698): 890-894, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781391

RESUMO

Primordial neutral atomic gas, mostly composed of hydrogen, is the raw material for star formation in galaxies. However, there are few direct constraints on the amount of neutral atomic hydrogen (H i) in galaxies at early cosmic times. We analyzed James Webb Space Telescope (JWST) near-infrared spectroscopy of distant galaxies, at redshifts ≳8. From a sample of 12 galaxies, we identified three that show strong damped Lyman-α absorption due to H i in their local surroundings. The galaxies are located at spectroscopic redshifts of 8.8, 10.2, and 11.4, corresponding to 400 to 600 million years after the Big Bang. They have H i column densities ≳1022 cm-2, which is an order of magnitude higher than expected for a fully neutral intergalactic medium, and constitute a gas-rich population of young star-forming galaxies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa