RESUMO
Molecules capable of both harvesting light and forming new chemical bonds hold promise for applications in the generation of solar fuels, but such first-row transition metal photoelectrocatalysts are lacking. Here we report nickel photoelectrocatalysts for H2 evolution, leveraging visible-light-driven photochemical H2 evolution from bis(diphosphine)nickel hydride complexes. A suite of experimental and theoretical analyses, including time-resolved spectroscopy and continuous irradiation quantum yield measurements, led to a proposed mechanism of H2 evolution involving a short-lived singlet excited state that undergoes homolysis of the Ni-H bond. Thermodynamic analyses provide a basis for understanding and predicting the observed photoelectrocatalytic H2 evolution by a 3d transition metal based catalyst. Of particular note is the dramatic change in the electrochemical overpotential: in the dark, the nickel complexes require strong acids and therefore high overpotentials for electrocatalysis; but under illumination, the use of weaker acids at the same applied potential results in a more than 500 mV improvement in electrochemical overpotential. New insight into first-row transition metal hydride photochemistry thus enables photoelectrocatalytic H2 evolution without electrochemical overpotential (at the thermodynamic potential or 0 mV overpotential). This catalyst system does not require sacrificial chemical reductants or light-harvesting semiconductor materials and produces H2 at rates similar to molecular catalysts attached to silicon.
RESUMO
The photochemistry of metal hydride complexes is dominated by H2 evolution, limiting access to reductive transformations based on photochemical hydride transfer. In this article, the innate H2 evolution photochemistry of the iridium hydride complexes [Cp*Ir(bpy-OMe)H]+ (1, bpy-OMe = 4,4'-dimethoxy-2,2'-bipyridine) and [Cp*Ir(bpy)H]+ (2, bpy = 2,2'-bipyridine) is diverted towards photochemical hydrodechlorination. Net hydride transfer from 1 and 2 to dichloromethane produces chloromethane with high selectivity and exceptional photochemical quantum yield (Φ ≤ 1.3). Thermodynamic and kinetic mechanistic studies are consistent with a non-radical-chain reaction sequence initiated by "self-quenching" electron transfer between excited state and ground state hydride complexes, followed by proton-coupled electron transfer (PCET) hydrodechlorination that outcompetes H-H coupling. This unique photochemical mechanism provides a new hope for the development of light-driven hydride transfer reactions.