Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Gene Ther ; 27(1-2): 15-26, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30926960

RESUMO

For patients with metastatic prostate cancer, the 5-year survival rate of 31% points to a need for novel therapies and improvement of existing modalities. We propose that p53 gene therapy and chemotherapy, when combined, will provide superior tumor cell killing for the treatment of prostate carcinoma. To this end, we have developed the AdRGD-PGp53 vector which offers autoregulated expression of p53, resulting in enhanced tumor cell killing in vitro and in vivo. Here, we combined AdRGD-PGp53 along with the chemotherapy drugs used in the clinical treatment of prostate carcinoma, mitoxantrone, docetaxel, or cabazitaxel. Our results indicate that all drugs increase phosphorylation of p53, leading to improved induction of p53 targets. In vitro experiments reveal that AdRGD-PGp53 sensitizes prostate cancer cells to each of the drugs tested, conferring increased levels of cell death. In a xenograft mouse model of in situ gene therapy, AdRGD-PGp53 treatment, when combined with cabazitaxel, drastically reduced tumor progression and increased survival rates to 100%. Strikingly, we used a sub-therapeutic dose of cabazitaxel thus avoiding leukopenia, yet still showed potent anti-tumor effects when combined with AdRGD-PGp53 in this mouse model. The AdRGD-PGp53 approach warrants further development for its application in gene therapy of prostate carcinoma.


Assuntos
Genes p53/genética , Neoplasias da Próstata/terapia , Taxoides/farmacologia , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Intervalo Livre de Doença , Quimioterapia Combinada/métodos , Regulação Neoplásica da Expressão Gênica/genética , Genes p53/imunologia , Terapia Genética/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Taxoides/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
2.
Gene Ther ; 27(1-2): 51-61, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31439890

RESUMO

Cancer therapies that target a single protein or pathway may be limited by their specificity, thus missing key players that control cellular proliferation and contributing to the failure of the treatment. We propose that approaches to cancer therapy that hit multiple targets would limit the chances of escape. To this end, we have developed a bicistronic adenoviral vector encoding both the CDKN2A and p53 tumor suppressor genes. The bicistronic vector, AdCDKN2A-I-p53, supports the translation of both gene products from a single transcript, assuring that all transduced cells will express both proteins. We show that combined, but not single, gene transfer results in markedly reduced proliferation and increased cell death correlated with reduced levels of phosphorylated pRB, induction of CDKN1A and caspase 3 activity, yet avoiding the induction of senescence. Using isogenic cell lines, we show that these effects were not impeded by the presence of mutant p53. In a mouse model of in situ gene therapy, a single intratumoral treatment with the bicistronic vector conferred markedly inhibited tumor progression while the treatment with either CDKN2A or p53 alone only partially controlled tumor growth. Histologic analysis revealed widespread transduction, yet reduced proliferation and increased cell death was associated only with the simultaneous transfer of CDKN2A and p53. We propose that restoration of two of the most frequently altered genes in human cancer, mediated by AdCDKN2A-I-p53, is beneficial since multiple targets are reached, thus increasing the efficacy of the treatment.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/administração & dosagem , Inibidor p16 de Quinase Dependente de Ciclina/genética , Terapia Genética/métodos , Neoplasias Pulmonares/terapia , Proteína Supressora de Tumor p53/administração & dosagem , Proteína Supressora de Tumor p53/genética , Adenoviridae/genética , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , Feminino , Genes p53 , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução Genética/métodos , Proteína Supressora de Tumor p53/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nucleic Acids Res ; 45(3): 1270-1280, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28180309

RESUMO

Genome lesions trigger biological responses that help cells manage damaged DNA, improving cell survival. Pol eta is a translesion synthesis (TLS) polymerase that bypasses lesions that block replicative polymerases, avoiding continued stalling of replication forks, which could lead to cell death. p53 also plays an important role in preventing cell death after ultraviolet (UV) light exposure. Intriguingly, we show that p53 does so by favoring translesion DNA synthesis by pol eta. In fact, the p53-dependent induction of pol eta in normal and DNA repair-deficient XP-C human cells after UV exposure has a protective effect on cell survival after challenging UV exposures, which was absent in p53- and Pol H-silenced cells. Viability increase was associated with improved elongation of nascent DNA, indicating the protective effect was due to more efficient lesion bypass by pol eta. This protection was observed in cells proficient or deficient in nucleotide excision repair, suggesting that, from a cell survival perspective, proper bypass of DNA damage can be as relevant as removal. These results indicate p53 controls the induction of pol eta in DNA damaged human cells, resulting in improved TLS and enhancing cell tolerance to DNA damage, which parallels SOS responses in bacteria.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Sobrevivência Celular , Cromatina/metabolismo , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Replicação do DNA/efeitos da radiação , DNA Polimerase Dirigida por DNA/genética , Relação Dose-Resposta à Radiação , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Raios Ultravioleta
4.
Pflugers Arch ; 470(11): 1659-1672, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30054719

RESUMO

Optogenetic stimulation of the adrenergic C1 neurons produces cardiorespiratory activation, and selective depletion of these cells attenuates breathing responses induced by hypoxia. The preBötzinger complex (preBötC) is a group of neurons located in the intermediate aspect of the ventrolateral medulla, critical for respiratory rhythmogenesis, and is modulated by glutamate and catecholamines. Our hypothesis is that selective activation of C1 neurons leads to breathing responses by excitatory connections with the preBötC neurons. Anatomical connection between C1 cells and preBötC was evaluated using retrograde (Cholera Toxin b; preBötC) and anterograde (LVV-PRSx8-ChR2-eYFP; C1 region) tracers. LVV-PRSx8-ChR2-eYFP (viral vector that expresses channelrhodopsin-2 (ChR2) under the control of the catecholaminergic neuron-preferring promoter (PRSx8) was also injected into the C1 region of male Wistar rats for the functional experiments. Anatomical results demonstrated that preBötC neurons receive projections from C1 cells, and these projections express tyrosine hydroxylase and vesicular glutamate transporter 2. Functional connection between C1 cells and preBötC was evaluated by photostimulation of ChR2-transduced C1 neurons before and after unilateral injection of the ionotropic glutamate antagonist, kynurenic acid (kyn), or cocktail of adrenergic antagonists in the preBötC. Kyn injection into preBötC blocked the increase in DiaEMG frequency without changing the MAP increase elicited by photostimulation of C1 neurons, while the injection of adrenergic antagonists into the preBötC did not change DiaEMG frequency and MAP increase induced by photostimulation of C1 cells. Our results suggest that the increase in breathing produced by photostimulation of C1 neurons can be caused by a direct glutamatergic activation of preBötC neurons.


Assuntos
Neurônios Adrenérgicos/fisiologia , Respiração , Centro Respiratório/fisiologia , Antagonistas Adrenérgicos/farmacologia , Neurônios Adrenérgicos/efeitos dos fármacos , Neurônios Adrenérgicos/metabolismo , Animais , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Cinurênico/farmacologia , Masculino , Optogenética , Ratos , Ratos Wistar , Centro Respiratório/citologia , Centro Respiratório/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
5.
Biochim Biophys Acta ; 1862(6): 1105-10, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27032384

RESUMO

BACKGROUND: TP53 Regulated Inhibitor of Apoptosis 1 (TRIAP1) modulates apoptotic pathways preventing the formation of the apoptosome complex. Our group previous study showed that 90% of patients' multiple myeloma (MM) marrow-derived plasma cells present TRIAP1 overexpression as compared to normal plasma cells. Due to high prevalence and lack of information on TRIAP1's role in MM biology, we decided to explore the impact of TRAIP1 through stable gene silencing in MM cell lines and its effect on cell cycle and apoptosis. METHODS: TRIAP1 expression was examined in MM cell lines by quantitative real time PCR. Cell lines were submitted to transduction with lentiviral vector encoding a TRIAP1-specific short hairpin RNA (shRNA) and, as control, encoding a non-targeting shRNA (scramble). Apoptosis was assessed by flow cytometry with annexin V and propidium iodide staining (the later also used for cell cycle), APAF1 and Caspase 9 apoptosome related genes expression and Caspase 9 and Caspase 3/7 activity. RESULTS: RPMI8226 and U266 cell lines were chosen for transduction experiments since they present higher levels of TRIAP1 expression. Inhibition of TRIAP1 in RPMI8226 cells increased the percentage of apoptotic cells, accompanied by increased expression of APAF1 and Caspase 9, and Caspase 9 and Caspase 3/7 activity. Transduced U266 cell line did not show sustained inhibition of TRIAP1 expression nor apoptosis induction. CONCLUSION: Stable silencing of TRIAP1 induces late apoptosis through APAF1/Caspase 9 pathway at least in RPMI8226 cell line, suggesting that it could be exploited as a potential target at least for a subgroup of MM patients. GENERAL SIGNIFICANCE: In the present study, we demonstrated effects of TRIAP1 silencing on RPMI8226 MM cell line and established its mechanism mediated through APAF1 and Caspase 9. No relevant effect was found after gene silencing in U266 cell line.


Assuntos
Apoptose , Fator Apoptótico 1 Ativador de Proteases/genética , Caspase 9/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mieloma Múltiplo/genética , Ciclo Celular , Linhagem Celular Tumoral , Humanos , Mieloma Múltiplo/patologia , Regulação para Cima
6.
Cancer Immunol Immunother ; 65(4): 371-82, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26887933

RESUMO

Previously, we combined p19(Arf) (Cdkn2a, tumor suppressor protein) and interferon beta (IFN-ß, immunomodulatory cytokine) gene transfer in order to enhance cell death in a murine model of melanoma. Here, we present evidence of the immune response induced when B16 cells succumbing to death due to treatment with p19(Arf) and IFN-ß are applied in vaccine models. Use of dying cells for prophylactic vaccination was investigated, identifying conditions for tumor-free survival. After combined p19(Arf) and IFN-ß treatment, we observed immune rejection at the vaccine site in immune competent and nude mice with normal NK activity, but not in NOD-SCID and dexamethasone immunosuppressed mice (NK deficient). Combined treatment induced IL-15, ULBP1, FAS/APO1 and KILLER/DR5 expression, providing a mechanism for NK activation. Prophylactic vaccination protected against tumor challenge, where markedly delayed progression and leukocyte infiltration were observed. Analysis of primed lymphocytes revealed secretion of TH1-related cytokines and depletion protocols showed that both CD4(+) and CD8(+) T lymphocytes are necessary for immune protection. However, application of this prophylactic vaccine where cells were treated either with IFN-ß alone or combined with p19(Arf) conferred similar immune protection and cytokine activation, yet only the combination was associated with increased overall survival. In a therapeutic vaccine protocol, only the combination was associated with reduced tumor progression. Our results indicate that by harnessing cell death in an immunogenic context, our p19(Arf) and IFN-ß combination offers a clear advantage when both genes are included in the vaccine and warrants further development as a novel immunotherapy for melanoma.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/imunologia , Interferon beta/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Vacinação/métodos , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Feminino , Terapia Genética/métodos , Imunoterapia/métodos , Interferon beta/genética , Interleucina-15/imunologia , Interleucina-15/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Melanoma Experimental/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Carga Tumoral/genética , Carga Tumoral/imunologia
7.
BMC Cancer ; 15: 70, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25879571

RESUMO

BACKGROUND: We previously identified dermicidin (DCD), which encodes a growth and survival factor, as a gene amplified and overexpressed in a subset of breast tumors. Patients with DCD-positive breast cancer have worse prognostic features. We therefore searched for specific molecular signatures in DCD-positive breast carcinomas from patients and representative cell lines. METHODS: DCD expression was evaluated by qRT-PCR, immunohistochemical and immunoblot assays in normal and neoplastic tissues and cell lines. To investigate the role of DCD in breast tumorigenesis, we analyzed the consequences of its downregulation in human breast cancer cell lines using three specific shRNA lentiviral vectors. Genes up- and down-regulated by DCD were identified using Affymetrix microarray and analyzed by MetaCore Platform. RESULTS: We identified DCD splice variant (DCD-SV) that is co-expressed with DCD in primary invasive breast carcinomas and in other tissue types and cell lines. DCD expression in breast tumors from patients with clinical follow up data correlated with high histological grade, HER2 amplification and luminal subtype. We found that loss of DCD expression led to reduced cell proliferation, resistance to apoptosis, and suppressed tumorigenesis in immunodeficient mice. Network analysis of gene expression data revealed perturbed ERBB signaling following DCD shRNA expression including changes in the expression of ERBB receptors and their ligands. CONCLUSIONS: These findings imply that DCD promotes breast tumorigenesis via modulation of ERBB signaling pathways. As ERBB signaling is also important for neural survival, HER2+ breast tumors may highjack DCD's neural survival-promoting functions to promote tumorigenesis.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Dermocidinas/genética , Dermocidinas/metabolismo , Receptor ErbB-2/metabolismo , Transdução de Sinais , Processamento Alternativo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Biomarcadores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Análise por Conglomerados , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Receptor ErbB-2/antagonistas & inibidores , Trastuzumab/administração & dosagem , Trastuzumab/farmacologia , Carga Tumoral/efeitos dos fármacos
8.
Muscle Nerve ; 48(3): 423-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23824709

RESUMO

INTRODUCTION: Severe lesions in the facial nerve may have extensive axonal loss and leave isolated stumps that impose technical difficulties for nerve grafting. METHODS: We evaluated bone marrow stem cells (BMSC) in a silicone conduit for rat facial nerve regeneration from isolated stumps. Group A utilized empty silicone tubes; in groups B-D, the tube was filled with acellular gel; and, in groups C and D, undifferentiated BMSC (uBMSC) or Schwann-like cells differentiated from BMSC (dBMSC) were added, respectively. Compound muscle action potentials (CMAPs) were measured, and histology was evaluated. RESULTS: Groups C and D had the highest CMAP amplitudes. Group C had shorter CMAP durations than groups A, B, and D. Distal axonal number and density were increased in group C compared with groups A and B. CONCLUSIONS: Regeneration of the facial nerve was improved by both uBMSC and dBMSC in rats, yet uBMSC was associated with superior functional results.


Assuntos
Cotos de Amputação/cirurgia , Transplante de Medula Óssea/métodos , Nervo Facial/citologia , Células-Tronco Mesenquimais/fisiologia , Músculo Esquelético/fisiopatologia , Regeneração Nervosa/fisiologia , Potenciais de Ação/fisiologia , Animais , Axônios/patologia , Células Cultivadas , Eletromiografia , Seguimentos , Masculino , Fator 6 de Transcrição de Octâmero/metabolismo , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Receptor de Fator de Crescimento Neural/metabolismo , Proteínas S100/metabolismo , Estatísticas não Paramétricas , Transdução Genética , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
9.
DNA Cell Biol ; 42(6): 274-288, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36576491

RESUMO

Together with an anti-tumor immune response, oncolysis using a recombinant viral vector promises to eliminate cancer cells by both gene transfer and host-mediated functions. In this study we explore oncolysis induced by nonreplicating adenoviral vectors used for p14ARF and interferon-ß (hIFNß) gene transfer in human melanoma cell lines, revealing an unexpected role for p14ARF in promoting cellular responses predictive of immune stimulation. Oncolysis was confirmed when UACC-62 (p53 wild-type) cells succumbed upon p14ARF gene transfer in vitro, whereas SK-Mel-29 (p53-mutant) benefitted from its combination with hIFNß. In the case of UACC-62, in situ gene therapy in nude mice yielded reduced tumor progression in response to the p14ARF and hIFNß combination. Potential for immune stimulation was revealed where p14ARF gene transfer in vitro was sufficient to induce emission of immunogenic cell death factors in UACC-62 and upregulate pro-immune genes, including IRF1, IRF7, IRF9, ISG15, TAP-1, and B2M. In SK-Mel-29, p14ARF gene transfer induced a subset of these factors. hIFNß was, as expected, sufficient to induce these immune-stimulating genes in both cell lines. This work is a significant advancement for our melanoma gene therapy strategy because we revealed not only the induction of oncolysis, but also the potential contribution of p14ARF to immune stimulation.


Assuntos
Melanoma , Proteína Supressora de Tumor p14ARF , Camundongos , Animais , Humanos , Proteína Supressora de Tumor p14ARF/genética , Proteína Supressora de Tumor p14ARF/metabolismo , Proteína Supressora de Tumor p53/genética , Camundongos Nus , Apoptose/fisiologia , Linhagem Celular , Melanoma/genética , Melanoma/terapia
10.
Circ Res ; 107(2): 204-16, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20522805

RESUMO

RATIONALE: Major coronary vessels derive from the proepicardium, the cellular progenitor of the epicardium, coronary endothelium, and coronary smooth muscle cells (CoSMCs). CoSMCs are delayed in their differentiation relative to coronary endothelial cells (CoEs), such that CoSMCs mature only after CoEs have assembled into tubes. The mechanisms underlying this sequential CoE/CoSMC differentiation are unknown. Retinoic acid (RA) is crucial for vascular development and the main RA-synthesizing enzyme is progressively lost from epicardially derived cells as they differentiate into blood vessel types. In parallel, myocardial vascular endothelial growth factor (VEGF) expression also decreases along coronary vessel muscularization. OBJECTIVE: We hypothesized that RA and VEGF act coordinately as physiological brakes to CoSMC differentiation. METHODS AND RESULTS: In vitro assays (proepicardial cultures, cocultures, and RALDH2 [retinaldehyde dehydrogenase-2]/VEGF adenoviral overexpression) and in vivo inhibition of RA synthesis show that RA and VEGF act as repressors of CoSMC differentiation, whereas VEGF biases epicardially derived cell differentiation toward the endothelial phenotype. CONCLUSION: Experiments support a model in which early high levels of RA and VEGF prevent CoSMC differentiation from epicardially derived cells before RA and VEGF levels decline as an extensive endothelial network is established. We suggest this physiological delay guarantees the formation of a complex, hierarchical, tree of coronary vessels.


Assuntos
Diferenciação Celular , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Miócitos de Músculo Liso/metabolismo , Pericárdio/metabolismo , Transdução de Sinais , Tretinoína/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Animais , Apoptose , Comunicação Autócrina , Diferenciação Celular/genética , Células Cultivadas , Embrião de Galinha , Técnicas de Cocultura , Vasos Coronários/embriologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Morfogênese , Miócitos Cardíacos/metabolismo , Comunicação Parácrina , Pericárdio/embriologia , Codorniz , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/genética , Técnicas de Cultura de Tecidos , Transdução Genética , Fator A de Crescimento do Endotélio Vascular/genética
11.
Front Mol Biosci ; 9: 777775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495634

RESUMO

Melanoma is the deadliest type of skin cancer with steadily increasing incidence worldwide during the last few decades. In addition to its tumor associated antigens (TAAs), melanoma has a high mutation rate compared to other tumors, which promotes the appearance of tumor specific antigens (TSAs) as well as increased lymphocytic infiltration, inviting the use of therapeutic tools that evoke new or restore pre-existing immune responses. Innovative therapeutic proposals, such as immune checkpoint inhibitors (ICIs), have emerged as effective options for melanoma. However, a significant portion of these patients relapse and become refractory to treatment. Likewise, strategies using viral vectors, replicative or not, have garnered confidence and approval by different regulatory agencies around the world. It is possible that further success of immune therapies against melanoma will come from synergistic combinations of different approaches. In this review we outline molecular features inherent to melanoma and how this supports the use of viral oncolysis and immunotherapies when used as monotherapies or in combination.

12.
Sci Rep ; 12(1): 13636, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948616

RESUMO

Balancing safety and efficacy is a major consideration for cancer treatments, especially when combining cancer immunotherapy with other treatment modalities such as chemotherapy. Approaches that induce immunogenic cell death (ICD) are expected to eliminate cancer cells by direct cell killing as well as activation of an antitumor immune response. We have developed a gene therapy approach based on p19Arf and interferon-ß gene transfer that, similar to conventional inducers of ICD, results in the release of DAMPS and immune activation. Here, aiming to potentiate this response, we explore whether association between our approach and treatment with doxorubicin (Dox), a known inducer of ICD, could further potentiate treatment efficacy without inducing cardiotoxicity, a critical side effect of Dox. Using central composite rotational design analysis, we show that cooperation between gene transfer and chemotherapy killed MCA205 and B16F10 cells and permitted the application of reduced viral and drug doses. The treatments also cooperated to induce elevated levels of ICD markers in MCA205, which correlated with improved efficacy of immunotherapy in vivo. Treatment of subcutaneous MCA205 tumors associating gene transfer and low dose (10 mg/kg) chemotherapy resulted in inhibition of tumor progression. Moreover, the reduced dose did not cause cardiotoxicity as compared to the therapeutic dose of Dox (20 mg/kg). The association of p19Arf/interferon-ß gene transfer and Dox chemotherapy potentiated antitumor response and minimized cardiotoxicity.


Assuntos
Cardiotoxicidade , Neoplasias , Cardiotoxicidade/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Genes Neoplásicos , Humanos , Imunoterapia/métodos , Interferon beta/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética
13.
Cancer Biol Ther ; 22(4): 301-310, 2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33853514

RESUMO

While treatments for colorectal cancer continue to improve, some 50% of patients succumb within 5 years, pointing to the need for additional therapeutic options. We have developed a modified non-replicating adenoviral vector for gene transfer, called AdRGD-PG, which offers improved levels of transduction and transgene expression. Here, we employ the p53-responsive PG promoter to drive expression of p53 or human interferon-ß (hIFNß) in human colorectal cancer cell lines HCT116wt (wtp53), HCT116-/- (p53 deficient) and HT29 (mutant p53). The HCT116 cell lines were both easily killed with p53 gene transfer, while combined p53 and hIFNß cooperated for the induction of HT29 cell death and emission of immunogenic cell death (ICD) markers. Elevated annexinV staining and caspase 3/7 activity point to cell death by a mechanism consistent with apoptosis. P53 gene transfer alone or in combination with hIFNß sensitized all cell lines to chemotherapy, permitting the application of low drug doses while still achieving significant loss of viability. While endogenous p53 status was not sufficient to predict response to treatment, combined p53 and hIFNß provided an additive effect in HT29 cells. We propose that this approach may prove effective for the treatment of colorectal cancer, permitting the use of limited drug doses.


Assuntos
Neoplasias Colorretais , Interferon beta , Proteína Supressora de Tumor p53 , Apoptose/genética , Morte Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Técnicas de Transferência de Genes , Células HCT116 , Humanos , Proteína Supressora de Tumor p53/genética
14.
Vaccines (Basel) ; 9(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34358144

RESUMO

Reversible electropermeabilization (RE) is an ultrastructural phenomenon that transiently increases the permeability of the cell membrane upon application of electrical pulses. The technique was described in 1972 by Neumann and Rosenheck and is currently used in a variety of applications, from medicine to food processing. In oncology, RE is applied for the intracellular transport of chemotherapeutic drugs as well as the delivery of genetic material in gene therapies and vaccinations. This review summarizes the physical changes of the membrane, the particularities of bleomycin, and the immunological aspects involved in electrochemotherapy and gene electrotransfer, two important EP-based cancer therapies in human and veterinary oncology.

15.
Free Radic Biol Med ; 162: 603-614, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33227407

RESUMO

Changes in vascular smooth muscle cell (VSMC) phenotype underlie disease pathophysiology and are strongly regulated by NOX NADPH oxidases, with NOX1 favoring synthetic proliferative phenotype and NOX4 supporting differentiation. Growth factor-triggered NOX1 expression/activity strictly depends on the chaperone oxidoreductase protein disulfide isomerase-A1 (PDIA1). Intracellular PDIA1 is required for VSMC migration and cytoskeleton organization, while extracellular PDIA1 fine-tunes cytoskeletal mechanoadaptation and vascular remodeling. We hypothesized that PDIA1 orchestrates NOX1/NOX4 balance and VSMC phenotype. Using an inducible PDIA1 overexpression model in VSMC, we showed that early PDIA1 overexpression (for 24-48 h) increased NOX1 expression, hydrogen peroxide steady-state levels and spontaneous VSMC migration distances. Sustained PDIA1 overexpression for 72 h and 96 h supported high NOX1 levels while also increasing NOX4 expression and, remarkably, switched VSMC phenotype to differentiation. Differentiation was preceded by increased nuclear myocardin and serum response factor-response element activation, with no change in cell viability. Both NOX1 and hydrogen peroxide were necessary for later PDIA1-induced VSMC differentiation. In primary VSMC, PDIA1 knockdown decreased nuclear myocardin and increased the proliferating cell nuclear antigen expression. Newly-developed PDIA1-overexpressing mice (TgPDIA1) exhibited normal general and cardiovascular baseline phenotypes. However, in TgPDIA1 carotids, NOX1 was decreased while NOX4 and calponin expressions were enhanced, indicating overdifferentiation vs. normal carotids. Moreover, in a rabbit overdistension injury model during late vascular repair, PDIA1 silencing impaired VSMC redifferentiation and NOX1/NOX4 balance. Our results suggest a model in which PDIA1 acts as an upstream organizer of NOX1/NOX4 balance and related VSMC phenotype, accounting for baseline differentiation setpoint.


Assuntos
Músculo Liso Vascular , NADPH Oxidase 1 , NADPH Oxidase 4 , Pró-Colágeno-Prolina Dioxigenase/genética , Isomerases de Dissulfetos de Proteínas , Animais , Células Cultivadas , Camundongos , Miócitos de Músculo Liso , NADPH Oxidase 1/genética , NADPH Oxidase 4/genética , Fenótipo , Isomerases de Dissulfetos de Proteínas/genética , Coelhos
16.
Cancers (Basel) ; 13(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919679

RESUMO

Recent preclinical and clinical studies have used viral vectors in gene therapy research, especially nonreplicating adenovirus encoding strategic therapeutic genes for cancer treatment. Adenoviruses were the first DNA viruses to go into therapeutic development, mainly due to well-known biological features: stability in vivo, ease of manufacture, and efficient gene delivery to dividing and nondividing cells. However, there are some limitations for gene therapy using adenoviral vectors, such as nonspecific transduction of normal cells and liver sequestration and neutralization by antibodies, especially when administered systemically. On the other hand, adenoviral vectors are amenable to strategies for the modification of their biological structures, including genetic manipulation of viral proteins, pseudotyping, and conjugation with polymers or biological membranes. Such modifications provide greater specificity to the target cell and better safety in systemic administration; thus, a reduction of antiviral host responses would favor the use of adenoviral vectors in cancer immunotherapy. In this review, we describe the structural and molecular features of nonreplicating adenoviral vectors, the current limitations to their use, and strategies to modify adenoviral tropism, highlighting the approaches that may allow for the systemic administration of gene therapy.

17.
BMC Cancer ; 10: 316, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20569441

RESUMO

BACKGROUND: Reactivation of p53 by either gene transfer or pharmacologic approaches may compensate for loss of p19Arf or excess mdm2 expression, common events in melanoma and glioma. In our previous work, we constructed the pCLPG retroviral vector where transgene expression is controlled by p53 through a p53-responsive promoter. The use of this vector to introduce p19Arf into tumor cells that harbor p53wt should yield viral expression of p19Arf which, in turn, would activate the endogenous p53 and result in enhanced vector expression and tumor suppression. Since nutlin-3 can activate p53 by blocking its interaction with mdm2, we explored the possibility that the combination of p19Arf gene transfer and nutlin-3 drug treatment may provide an additive benefit in stimulating p53 function. METHODS: B16 (mouse melanoma) and C6 (rat glioma) cell lines, which harbor p53wt, were transduced with pCLPGp19 and these were additionally treated with nutlin-3 or the DNA damaging agent, doxorubicin. Viral expression was confirmed by Western, Northern and immunofluorescence assays. p53 function was assessed by reporter gene activity provided by a p53-responsive construct. Alterations in proliferation and viability were measured by colony formation, growth curve, cell cycle and MTT assays. In an animal model, B16 cells were treated with the pCLPGp19 virus and/or drugs before subcutaneous injection in C57BL/6 mice, observation of tumor progression and histopathologic analyses. RESULTS: Here we show that the functional activation of endogenous p53wt in B16 was particularly challenging, but accomplished when combined gene transfer and drug treatments were applied, resulting in increased transactivation by p53, marked cell cycle alteration and reduced viability in culture. In an animal model, B16 cells treated with both p19Arf and nutlin-3 yielded increased necrosis and decreased BrdU marking. In comparison, C6 cells were quite susceptible to either treatment, yet p53 was further activated by the combination of p19Arf and nutlin-3. CONCLUSIONS: To the best of our knowledge, this is the first study to apply both p19Arf and nutlin-3 for the stimulation of p53 activity. These results support the notion that a p53 responsive vector may prove to be an interesting gene transfer tool, especially when combined with p53-activating agents, for the treatment of tumors that retain wild-type p53.


Assuntos
Antineoplásicos/farmacologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Terapia Genética , Glioma/terapia , Imidazóis/farmacologia , Melanoma Experimental/terapia , Piperazinas/farmacologia , Transdução Genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Northern Blotting , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Terapia Combinada , Inibidor p16 de Quinase Dependente de Ciclina/genética , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Imunofluorescência , Vetores Genéticos , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Retroviridae/genética , Fatores de Tempo , Ativação Transcricional , Transfecção , Carga Tumoral , Proteína Supressora de Tumor p53/genética
18.
Virol J ; 7: 16, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20096105

RESUMO

BACKGROUND: Gene therapy in the hematopoietic system remains promising, though certain aspects of vector design, such as transcriptional control elements, continue to be studied. Our group has developed a retroviral vector where transgene expression is controlled by p53 with the intention of harnessing the dynamic and inducible nature of this tumor suppressor and transcription factor. We present here a test of in vivo expression provided by the p53-responsive vector, pCLPG. For this, we used a model of serial transplantation of transduced bone marrow cells. RESULTS: We observed, by flow cytometry, that the eGFP transgene was expressed at higher levels when the pCLPG vector was used as compared to the parental pCL retrovirus, where expression is directed by the native MoMLV LTR. Expression from the pCLPG vector was longer lasting, but did decay along with each sequential transplant. The detection of eGFP-positive cells containing either vector was successful only in the bone marrow compartment and was not observed in peripheral blood, spleen or thymus. CONCLUSIONS: These findings indicate that the p53-responsive pCLPG retrovirus did offer expression in vivo and at a level that surpassed the non-modified, parental pCL vector. Our results indicate that the pCLPG platform may provide some advantages when applied in the hematopoietic system.


Assuntos
Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos , Retroviridae/genética , Transdução Genética , Animais , Transplante de Medula Óssea , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Supressora de Tumor p53/metabolismo
19.
Methods Mol Biol ; 2086: 61-67, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31707667

RESUMO

One of the most versatile gene transfer methods involves the use of recombinant lentiviral vectors since they can transduce both dividing and nondividing cells, are considered to be safe and provide long-term transgene expression since the integrated viral genome, the provirus, is passed on to daughter cells. These characteristics are highly desirable when a modified cell must continue to express the transgene even after multiple cell divisions. Lentiviral vectors are often used to introduce protein encoding cDNAs, such as reporter genes, or for noncoding sequences, such as mediators of RNA interference or genome editing, including shRNA or gRNA, respectively. In the gene therapy setting, lentiviral vectors have been used successfully for the modification of hematopoietic stem cells, resulting in restored immune function or correction of defects in hemoglobin, to name but a few examples. The success of chimeric antigen receptor (CAR) T cells for the treatment of B cell leukemias and lymphomas has been particularly striking and this approach has relied heavily on lentivirus-mediated gene transfer. Here we present a typical protocol for the production of lentivirus, concentration by ultracentrifugation and determination of virus titer. The resulting virus can then be used in laboratory assays of gene transfer, including the establishment of CAR T cells.


Assuntos
Engenharia Genética , Vetores Genéticos/biossíntese , Vetores Genéticos/genética , Lentivirus/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Citometria de Fluxo , Expressão Gênica , Técnicas de Transferência de Genes , Genes Reporter , Terapia Genética , Vetores Genéticos/isolamento & purificação , Humanos , Imunoterapia Adotiva , Transdução Genética , Transfecção , Transgenes , Ultracentrifugação/métodos
20.
Cancers (Basel) ; 12(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825533

RESUMO

Gene therapy is now surpassing 30 years of clinical experience and in that time a variety of approaches has been applied for the treatment of a wide range of pathologies. While the promise of gene therapy was over-stated in the 1990's, the following decades were met with polar extremes between demonstrable success and devastating setbacks. Currently, the field of gene therapy is enjoying the rewards of overcoming the hurdles that come with turning new ideas into safe and reliable treatments, including for cancer. Among these modalities, the modification of T cells with chimeric antigen receptors (CAR-T cells) has met with clear success and holds great promise for the future treatment of cancer. We detail a series of considerations for the improvement of the CAR-T cell approach, including the design of the CAR, routes of gene transfer, introduction of CARs in natural killer and other cell types, combining the CAR approach with checkpoint blockade or oncolytic viruses, improving pre-clinical models as well as means for reducing cost and, thus, making this technology more widely available. While CAR-T cells serve as a prime example of translating novel ideas into effective treatments, certainly the lessons learned will serve to accelerate the current and future development of gene therapy drugs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa