RESUMO
AIMS: To determine the prevalence and in vitro electrophysiological (EP) phenotype of ultra-rare SCN5A variants of uncertain significance (VUS) identified in unexplained sudden cardiac arrest (SCA) survivors. METHODS AND RESULTS: Retrospective review of 73 unexplained SCA survivors was used to identify all patients that underwent a form of genetic testing that included comprehensive SCN5A analysis. Ultra-rare SCN5A variants (minor allele frequency < 0.005) were adjudicated according to the 2015 American College of Medical Genetics and Genomics (ACMG) guidelines. Variants designated as VUS were expressed heterologously and characterized using the whole-cell patch clamp technique. Overall, 60/73 (82%; the average age at SCA 28 ± 12 years) unexplained SCA survivors had received SCN5A genetic testing. Of these, 5/60 (8.3%) had an ultra-rare SCN5A variant. All SCN5A variants were classified as VUS. Whereas the single SCN5A VUS (p.Asp872Asn-SCN5A) identified in an unexplained SCA survivor with PR interval prolongation and inferior early repolarization conferred a loss-of-function phenotype (46.2% reduction in peak current density; 16 ms slower recovery from inactivation), the four other SCN5A VUS (p.Glu30Gly-SCN5A, p.Gln245Lys-SCN5A, p.Pro648Leu-SCN5A, and p.Glu1240Gln-SCN5A) identified in unexplained SCA survivors without early repolarization/conduction delay were indistinguishable from wild-type Nav1.5 channels. CONCLUSION: In the absence of a phenotype(s) potentially attributable to sodium channel dysfunction, all SCN5A VUS identified in unexplained SCA survivors conferred a wild-type EP phenotype in vitro. As the background rate of SCN5A genetic variation is not trivial, great care must be taken to avoid prioritizing genotype over phenotype when attempting to ascertain the root cause of an individual's SCA.
Assuntos
Morte Súbita Cardíaca , Canal de Sódio Disparado por Voltagem NAV1.5 , Morte Súbita Cardíaca/epidemiologia , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Fenótipo , Prevalência , Estudos Retrospectivos , SobreviventesRESUMO
BACKGROUND: Pathogenic variants in the SCN5A-encoded Nav1.5 sodium channel cause type 3 long QT syndrome (LQT3). We present the case of an infant with severe LQT3 who was refractory to multiple pharmacologic therapies as well as bilateral stellate ganglionectomy. The patient's novel variant, p.F1760C-SCN5A, involves a critical residue of the Nav1.5's local anesthetic binding domain. OBJECTIVE: The purpose of this study was to characterize functionally the p.F1760C-SCN5A variant using TSA-201 and patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). METHODS: Whole-cell patch clamp was used to assess p.F1760C-SCN5A associated sodium currents with/without lidocaine (Lido), flecainide, and phenytoin (PHT) in TSA-201 cells. p.F1760C-SCN5A and CRISPR-Cas9 variant-corrected isogenic control (IC) iPSC-CMs were generated. FluoVolt voltage dye was used to measure the action potential duration (APD) with/without mexiletine or PHT. RESULTS: V1/2 of inactivation was right-shifted significantly in F1760C cells (-72.2 ± 0.7 mV) compared to wild-type (WT) cells (-86.3 ± 0.9 mV; P <.0001) resulting in a marked increase in window current. F1760C increased sodium late current 2-fold from 0.18% ± 0.04% of peak in WT to 0.49% ± 0.07% of peak in F1760C (P = .0005). Baseline APD to 90% repolarization (APD90) was increased markedly in F1760C iPSC-CMs (601 ± 4 ms) compared to IC iPSC-CMs (423 ± 15 ms; P <.0001). However, 4-hour treatment with 10 µM mexiletine failed to shorten APD90, and treatment with 5µM PHT significantly decreased APD90 of F1760C iPSC-CMs (453 ± 6 ms; P <.0001). CONCLUSION: PHT rescued electrophysiological phenotype and APD of a novel p.F1760C-SCN5A variant. The antiepileptic drug PHT may be an effective alternative therapeutic for the treatment of LQT3, especially for variants that disrupt the Lido/mexiletine binding site.
Assuntos
Antiarrítmicos , Síndrome do QT Longo , Mexiletina , Humanos , Lactente , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Lidocaína , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/genética , Síndrome do QT Longo/terapia , Mexiletina/uso terapêutico , Mexiletina/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.5/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismoRESUMO
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a cardiac channelopathy causing ventricular tachycardia following adrenergic stimulation. Pathogenic variants in RYR2-encoded ryanodine receptor 2 (RYR2) cause CPVT1 and cluster into domains I-IV, with the most N-terminal domain involving residues 77-466. Patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated for RYR2-F13L, -L14P, -R15P, and -R176Q variants. Isogenic control iPSCs were generated using CRISPR-Cas9/PiggyBac. Fluo-4 Ca2+ imaging assessed Ca2+ handling with/without isoproterenol (ISO), nadolol (Nad), and flecainide (Flec) treatment. CPVT1 iPSC-CMs displayed increased Ca2+ sparking and Ca2+ transient amplitude following ISO compared with control. Combined Nad treatment/ISO stimulation reduced Ca2+ amplitude and sparking in variant iPSC-CMs. Molecular dynamic simulations visualized the structural role of these variants. We provide the first functional evidence that these most proximal N-terminal localizing variants alter calcium handling similar to CPVT1. These variants are located at the N-terminal domain and the central domain interface and could destabilize the RYR2 channel promoting Ca2+ leak-triggered arrhythmias.