Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Oncologist ; 29(3): 244-253, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37846191

RESUMO

BACKGROUND: The treatment landscape for locally advanced/metastatic urothelial carcinoma (la/mUC) has evolved. This study examined US prescribing patterns and clinical decision-making for first-line (1L) and first-line maintenance (1LM) treatment. MATERIALS AND METHODS: US-based oncologists (N = 150) completed an online survey on patient demographics, practice patterns, and important factors considered in 1L/1LM selection. Multivariable logistic regression was used to assess factors associated with more vs less frequent 1L/1LM prescribing. RESULTS: Physician reports estimated that 23% of patients with la/mUC had not received any systemic therapy in the previous 6 months; however, 46% received 1L, 32% received second-line, and 22% received subsequent-line systemic treatments. Of patients who were receiving 1L treatment, 72% were estimated to be receiving 1L platinum-based chemotherapy. Around 69% of patients eligible for 1LM received the treatment. Physicians categorized as frequent prescribers reported overall survival (OS), disease control rate (DCR), and rate of grade 3/4 adverse events (AEs) as factors associated with 1L treatment selection (all P < .05). OS, rate of grade 3/4 immune-mediated AEs, and inclusion in institutional guidelines were reported as attributes used in 1LM treatment selection (all P < .05). Multivariable analysis revealed OS, DCR, and rate of grade 3/4 AEs as important factors in oncologists' 1L treatment selection; academic practice setting and use of Response Evaluation Criteria in Solid Tumors version 1.1 were associated with 1LM use (all P < .05). CONCLUSION: OS and AEs were found to be relevant factors associated with offering 1L and 1LM treatment. Variability exists in physicians' decision-making in the real-world setting for la/mUC.


Assuntos
Carcinoma de Células de Transição , Oncologistas , Médicos , Neoplasias da Bexiga Urinária , Humanos , Carcinoma de Células de Transição/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Critérios de Avaliação de Resposta em Tumores Sólidos
2.
Biochem Biophys Res Commun ; 698: 149539, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271835

RESUMO

INTRODUCTION: DNA double-strand breaks (DSBs) induced by ionizing radiation pose a significant threat to genome integrity, necessitating robust repair mechanisms. This study explores the responses of repair-deficient cells to low dose rate (LDR) radiation. Non-homologous end joining (NHEJ) and homologous recombination (HR) repair pathways play pivotal roles in maintaining genomic stability. The hypothesis posits distinct cellular outcomes under LDR exposure compared to acute radiation, impacting DNA repair mechanisms and cell survival. MATERIALS AND METHODS: Chinese hamster ovary (CHO) cells, featuring deficiencies in NHEJ, HR, Fanconi Anemia, and PARP pathways, were systematically studied. Clonogenic assays for acute and LDR gamma-ray exposures, cell growth inhibition analyses, and γ-H2AX foci assays were conducted, encompassing varied dose rates to comprehensively assess cellular responses. RESULTS: NHEJ mutants exhibited an unexpected inverse dose rate effect, challenging conventional expectations. HR mutants displayed unique radiosensitivity patterns, aligning with responses to major DNA-damaging agents. LDR exposure induced cell cycle alterations, growth delays, and giant cell formation, revealing context-dependent sensitivities. γ-H2AX foci assays indicated DSB accumulation during LDR exposure. DISCUSSION: These findings challenge established paradigms, emphasizing the intricate interplay between repair pathways and dose rates. The study offers comprehensive insights into repair-deficient cell responses, urging a reevaluation of conventional dose-response models and providing potential avenues for targeted therapeutic strategies in diverse radiation scenarios.


Assuntos
Reparo do DNA por Junção de Extremidades , Reparo do DNA , Cricetinae , Animais , Células CHO , Cricetulus , Reparo do DNA/genética , Reparo do DNA por Junção de Extremidades/genética , Reparo de DNA por Recombinação , DNA
3.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927807

RESUMO

BrdU (bromodeoxyuridine) and EdU (ethynyldeoxyuridine) have been largely utilized as the means of monitoring DNA replication and cellular division. Although BrdU induces gene and chromosomal mutations and induces sensitization to photons, EdU's effects have not been extensively studied yet. Therefore, we investigated EdU's potential cytotoxic and mutagenic effects and its related underlying mechanisms when administered to Chinese hamster ovary (CHO) wild type and DNA repair-deficient cells. EdU treatment displayed a higher cytotoxicity and genotoxicity than BrdU treatment. Cells with defective homologous recombination repair displayed a greater growth delay and severe inhibition of clonogenicity with EdU compared to wild type and other DNA repair-deficient cells. Inductions of sister chromatid exchange and hypoxanthine phosphorybosyl transferase (HPRT) mutation were observed in EdU-incorporated cells as well. Interestingly, on the other hand, EdU did not induce sensitization to photons to the same degree as BrdU. Our results demonstrate that elevated concentrations (similar to manufacturers suggested concentration; >5-10 µM) of EdU treatment were toxic to the cell cultures, particularly in cells with a defect in homologous recombination repair. Therefore, EdU should be administered with additional precautions.


Assuntos
Desoxiuridina/análogos & derivados , Células A549 , Animais , Bromodesoxiuridina , Células CHO , Cricetulus , Reparo do DNA , Desoxiuridina/toxicidade , Genes BRCA2 , Humanos , Testes de Mutagenicidade
4.
J Neurosci ; 37(8): 2125-2136, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28115479

RESUMO

O-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O-GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes in vivo Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health in vivo are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons.SIGNIFICANCE STATEMENT We show the importance of O-GlcNAc transferase (OGT) for sensory neuron health and survival in vivo This study is the first to find that loss of OGT results in neuronal cell death. Moreover, it suggests that aberrant O-GlcNAc signaling can contribute to the development of neuropathy. The sensory neurons lie outside of the blood-brain barrier and therefore, compared to central neurons, may have a greater need for mechanisms of metabolic sensing and compensation. Peripheral sensory neurons in particular are subject to degeneration in diabetes. Our findings provide a foundation for understanding the role of OGT under normal physiological conditions in the peripheral nervous system. This knowledge will be important for gaining greater insight into such disease states as diabetic neuropathy.


Assuntos
N-Acetilglucosaminiltransferases/metabolismo , Células Receptoras Sensoriais/fisiologia , Animais , Peso Corporal/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Gânglios Espinais/citologia , Regulação da Expressão Gênica/genética , Teste de Tolerância a Glucose , Locomoção/genética , Masculino , Transtornos Mentais/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Força Muscular/genética , N-Acetilglucosaminiltransferases/deficiência , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Plasticidade Neuronal/genética , Sensação Térmica/genética , Fator de Transcrição Brn-3A/genética , Fator de Transcrição Brn-3A/metabolismo
5.
Int J Mol Sci ; 19(8)2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061540

RESUMO

It has been well established that hypoxia significantly increases both cellular and tumor resistance to ionizing radiation. Hypoxia associated radiation resistance has been known for some time but there has been limited success in sensitizing cells to radiation under hypoxic conditions. These studies show that, when irradiated with low linear energy transfer (LET) gamma-rays, poly (ADP-ribose), polymerase (PARP), Fanconi Anemia (FANC), and mutant Chinese Hamster Ovary (CHO) cells respond similarly to the non-homologous end joining (NHEJ) and the homologous recombination (HR) repair mutant CHO cells. Comparable results were observed in cells exposed to 13 keV/µm carbon ions. However, when irradiated with higher LET spread out Bragg peak (SOBP) carbon ions, we observed a decrease in the oxygen enhancement ratio (OER) in all the DNA of repair mutant cell lines. Interestingly, PARP mutant cells were observed as having the largest decrease in OER. Finally, these studies show a significant increase in the relative biological effectiveness (RBE) of high LET SOBP carbon and iron ions in HR and PARP mutants. There was also an increase in the RBE of NHEJ mutants when irradiated to SOBP carbon and iron ions. However, this increase was lower than in other mutant cell lines. These findings indicate that high LET radiation produces unique types of DNA damage under hypoxic conditions and PARP and HR repair pathways play a role in repairing this damage.


Assuntos
Dano ao DNA/efeitos da radiação , Ovário/citologia , Ovário/efeitos da radiação , Animais , Células CHO , Hipóxia Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Cricetinae , Cricetulus , Reparo do DNA/efeitos da radiação , Feminino , Raios gama/efeitos adversos , Transferência Linear de Energia , Testes para Micronúcleos , Ovário/metabolismo , Oxigênio/metabolismo , Radiação Ionizante
6.
PLoS Pathog ; 11(4): e1004793, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25830507

RESUMO

Francisella tularensis is a Gram-negative bacterium whose ability to replicate within macrophages and cause disease is strictly dependent upon the coordinate activities of three transcription regulators called MglA, SspA, and PigR. MglA and SspA form a complex that associates with RNA polymerase (RNAP), whereas PigR is a putative DNA-binding protein that functions by contacting the MglA-SspA complex. Most transcription activators that bind the DNA are thought to occupy only those promoters whose activities they regulate. Here we show using chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-Seq) that PigR, MglA, and SspA are found at virtually all promoters in F. tularensis and not just those of regulated genes. Furthermore, we find that the ability of PigR to associate with promoters is dependent upon the presence of MglA, suggesting that interaction with the RNAP-associated MglA-SspA complex is what directs PigR to promoters in F. tularensis. Finally, we present evidence that the ability of PigR (and thus MglA and SspA) to positively control the expression of genes is dictated by a specific 7 base pair sequence element that is present in the promoters of regulated genes. The three principal regulators of virulence gene expression in F. tularensis therefore function in a non-classical manner with PigR interacting with the RNAP-associated MglA-SspA complex at the majority of promoters but only activating transcription from those that contain a specific sequence element. Our findings reveal how transcription factors can exert regulatory effects at a restricted set of promoters despite being associated with most or all. This distinction between occupancy and regulatory effect uncovered by our data may be relevant to the study of RNAP-associated transcription regulators in other pathogenic bacteria.


Assuntos
Francisella tularensis/genética , Francisella tularensis/patogenicidade , Regulação Bacteriana da Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Imunoprecipitação da Cromatina , Eletroporação , Genes Bacterianos , Sequenciamento de Nucleotídeos em Larga Escala , Immunoblotting , Virulência/genética
7.
Biochem Biophys Res Commun ; 476(4): 359-364, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27235553

RESUMO

Glyceryl glucoside (GG, α-d-glucosyglycerol) is a natural glycerol derivative found in alcoholic drinks. Recently GG has been used as an alternative for glycerol in cosmetic products. However, the safety of using GG is still unclear. Currently, dimethyl sulfoxide (DMSO) and glycerol are wildly used in cryopreservation. Despite GG being a derivative of glycerol, the ability of GG in cryopreservation is still unknown. By using a system of Chinese Hamster Ovary cells (CHO), A549 cells and AG1522 cells, the study examined the cryoprotective effects of DMSO, glycerol and GG. Cytotoxic and genotoxic responses induced by the three chemicals were also investigated with CHO to determine the safety of GG for cosmetic products. Our data suggests that GG has great cryopresearvation ability in the concentration of 30%-40% (v/v). For cytotoxic studies, DMSO showed the highest cytotoxicity above 3% (v/v) in cell doubling time delay among three chemicals. For the acute cytotoxicity with trypan blue dye exclusion assay, GG showed stronger cell killing effect within 24 h above 4% (v/v). For the continuous cytotoxicity with colony formation assay for 7 days, DMSO showed significantly reduced clonogenic ability above 2%. In genotoxicity studies, CHO treated with glycerol at 2% concentration induced three times higher frequencies of sister chromatid exchange (SCE) than background levels. GG did not induce significant amounts of SCE compared to background. Micronuclei formation was equally observed in the 2% and above concentrations of glycerol and GG. Our data showed that GG has significant effects on cryopreservation compared to DMSO. Glycerol and GG have similar cytotoxicity effects to CHO, but glycerol induced genotoxic responses in the same concentration. Therefore, we conclude that GG may be a safer alternative compound to glycerol in cosmetic products and safer alternative to DMSO in cryopreservation.


Assuntos
Crioprotetores/farmacologia , Glucosídeos/farmacologia , Animais , Células CHO , Cricetulus , Crioprotetores/efeitos adversos , Dimetil Sulfóxido/efeitos adversos , Dimetil Sulfóxido/farmacologia , Glicerol/efeitos adversos , Glicerol/farmacologia , Testes para Micronúcleos , Troca de Cromátide Irmã/efeitos dos fármacos , Testes de Toxicidade
8.
Pestic Biochem Physiol ; 107(3): 377-84, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24267700

RESUMO

Although insecticide resistance is a widespread problem for most insect pests, frequently the assessment of resistance occurs over a limited geographic range. Herein, we report the first widespread survey of insecticide resistance in the USA ever undertaken for the house fly, Musca domestica, a major pest in animal production facilities. The levels of resistance to six different insecticides were determined (using discriminating concentration bioassays) in 10 collections of house flies from dairies in nine different states. In addition, the frequencies of Vssc and CYP6D1 alleles that confer resistance to pyrethroid insecticides were determined for each fly population. Levels of resistance to the six insecticides varied among states and insecticides. Resistance to permethrin was highest overall and most consistent across the states. Resistance to methomyl was relatively consistent, with 65-91% survival in nine of the ten collections. In contrast, resistance to cyfluthrin and pyrethrins + piperonyl butoxide varied considerably (2.9-76% survival). Resistance to imidacloprid was overall modest and showed no signs of increasing relative to collections made in 2004, despite increasing use of this insecticide. The frequency of Vssc alleles that confer pyrethroid resistance was variable between locations. The highest frequencies of kdr, kdr-his and super-kdr were found in Minnesota, North Carolina and Kansas, respectively. In contrast, the New Mexico population had the highest frequency (0.67) of the susceptible allele. The implications of these results to resistance management and to the understanding of the evolution of insecticide resistance are discussed.


Assuntos
Inseticidas/farmacologia , Piretrinas/farmacologia , Alelos , Animais , Moscas Domésticas , Resistência a Inseticidas/genética , Estados Unidos
9.
Toxics ; 11(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37755783

RESUMO

Cu2+ and Co2+ are metals known to increase DNA damage in the presence of hydrogen peroxide through a Fenton-type reaction. We hypothesized that these metals could increase DNA damage following irradiations of increasing LET values as hydrogen peroxide is a product of the radiolysis of water. The reaction mixtures contain either double- or single-stranded DNA in solution with Cu2+ or Co2+ and were irradiated either with X-ray, carbon-ion or iron-ion beams, or they were treated with hydrogen peroxide or bleomycin at increasing radiation dosages or chemical concentrations. DNA damage was then assessed via gel electrophoresis followed with a band intensity analysis. DNA damage was the greatest when DNA in the solution with either metal was treated with only hydrogen peroxide followed by the DNA damage of DNA in the solution with either metal post irradiation of low-LET (X-Ray) or high-LET (carbon-ion and iron-ion), respectively, and demonstrated the least damage after treatment with bleomycin. Cu2+ portrayed greater DNA damage than Co2+ following all experimental conditions. The metals' effect caused more DNA damage and was observed to be LET-dependent for single-strand break formation but inversely dependent for double-strand break formation. These results suggest that Cu2+ is more efficient than Co2+ at inducing both DNA single-strand and double-strand breaks following all irradiations and chemical treatments.

10.
Genes (Basel) ; 11(6)2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545288

RESUMO

Phototherapy using narrowband ultraviolet-B (NB-UVB) has been shown to be more effective than conventional broadband UVB (BB-UVB) in treating a variety of skin diseases. To assess the difference in carcinogenic potential between NB-UVB and BB-UVB, we investigated the cytotoxicity via colony formation assay, genotoxicity via sister chromatid exchange (SCE) assay, mutagenicity via hypoxanthine phosphoribosyltransferase (HPRT) mutation assay, as well as cyclobutane pyrimidine dimer (CPD) formation and reactive oxygen species (ROS) generation in Chinese hamster ovary (CHO) and their NER mutant cells. The radiation dose required to reduce survival to 10% (D10 value) demonstrated BB-UVB was 10 times more cytotoxic than NB-UVB, and revealed that NB-UVB also induces DNA damage repaired by nucleotide excision repair. We also found that BB-UVB more efficiently induced SCEs and HPRT mutations per absorbed energy dosage (J/m2) than NB-UVB. However, SCE and HPRT mutation frequencies were observed to rise in noncytotoxic dosages of NB-UVB exposure. BB-UVB and NB-UVB both produced a significant increase in CPD formation and ROS formation (p < 0.05); however, higher dosages were required for NB-UVB. These results suggest that NB-UVB is less cytotoxic and genotoxic than BB-UVB, but can still produce genotoxic effects even at noncytotoxic doses.


Assuntos
Dano ao DNA/efeitos da radiação , Mutagênese/efeitos da radiação , Mutagênicos/toxicidade , Pele/efeitos da radiação , Animais , Células CHO , Cricetinae , Cricetulus , Dano ao DNA/genética , Humanos , Mutagênese/genética , Mutação/efeitos da radiação , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/efeitos da radiação , Pele/metabolismo , Raios Ultravioleta
11.
Methods Mol Biol ; 1984: 23-29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31267416

RESUMO

Micronuclei are formed by broken chromosome fragments or chromosomes, which were not appropriately separated into the daughter cells' nuclei after division. The appearance of micronuclei is typically a sign of genotoxic events. Majority of micronuclei are formed by broken acentric fragments, but some micronuclei are formed by centric chromosome fragments which were not appropriately separated to daughter cells' nuclei. Because researchers only need to measure visible micronuclei in binucleated cells, micronuclei analysis is much easier than metaphase chromosome aberration analysis discussed in the previous chapter. This method does not require professional training compared to metaphase chromosome aberration analysis. In addition, one can analyze many samples in a relatively short time. Not only ionizing radiation, but other genotoxic stress also induces micronuclei formation. The background frequency of micronuclei is noticeably higher than chromosome aberrations. But researchers can easily analyze 300-1000 binucleated cells per data point to obtain statistically significant differences of irradiated samples. In this chapter, we will discuss the advantages and preparation of micronuclei samples.


Assuntos
Micronúcleos com Defeito Cromossômico/efeitos da radiação , Testes para Micronúcleos/métodos , Radiação Ionizante , Animais , Células CHO , Cricetinae , Cricetulus
12.
Environ Sci Process Impacts ; 21(8): 1342-1352, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31049512

RESUMO

In this study, we investigated the airborne particles released during paper printing and paper shredding processes in an attempt to characterize and differentiate these particles. Particle characteristics were studied with real time instruments (RTIs) to measure concentrations and with samplers to collect particles for subsequent microscopy and cytotoxicity analysis. The particles released by paper shredding were evaluated for cytotoxicity by using in vitro human lung epithelial cell models. A substantial amount of particles were released during both the shredding and printing processes. We found that the printing process caused substantial release of particles with sizes of less than 300 nm in the form of metal granules and graphite. These released particles contained various elements including Al, Ca, Cu, Fe, Mg, N, K, P, S and Si. The particles released by the paper shredding processes were primarily nanoparticles and had a peak size between 27.4 nm and 36.5 nm. These paper particles contained elements including Al, Br Ca, Cl, Cr, Cu, Fe, Mg, N, Na, Ni P, S and Si, as determined by scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS) and single-particle inductively coupled plasma-mass spectroscopy (SP-ICP-MS) analysis. Although various metals were identified in the paper particles, these particles did not elicit cytotoxicity to simian virus-transformed bronchial epithelial cells (BEAS2B) and immortalized normal human bronchial epithelial cells (HBE1). However, future studies should investigate other cytotoxicity effects of these paper particles in various types of lung cells to identify potential health effects of the particles.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Papel , Material Particulado/análise , Impressão , Grafite/análise , Humanos , Metais/análise , Tamanho da Partícula , Impressão/instrumentação
13.
Int J Mol Med ; 42(1): 658-664, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29620152

RESUMO

Quercetin has been demonstrated to produce DNA damage in the presence of metal ions. In the present study, 7 natural and 5 semi­synthetic glycosylated flavonoids were utilized to investigate the cupric ion (Cu2+)­dependent DNA damage in vitro. The reaction mixture, containing single­stranded DNA, different concentrations of flavonoids and cupric ion in the buffer, was incubated at three different temperatures. DNA damage was then assessed by gel electrophoresis followed by densitometric analysis. The reaction mixture with quercetin at 4, 20 and 54˚C induced DNA damage in a concentration­ and temperature­dependent manner. Furthermore, only the reaction at 54˚C resulted in DNA damage in flavonoids with glucosyl substitution of the hydroxyl group at the 3­position on the C ring in quercetin. By contrast, loss of the hydroxyl group at the 3­position on the C ring, or at the 3'­ or 4'­position on the B ring of quercetin, did not portray DNA damage formation at the investigated experimental temperatures. In addition, the experimental results suggested that the hydroxyl group at the 3­position on the C ring produced the strongest capability to induce DNA damage in the presence of cupric ions. Furthermore, hydroxyl groups at the 3'­ or 4'­position on the B ring were only able to induce DNA damage at higher temperatures, and were less efficient in comparison with the hydroxyl group at the 3­position on the C ring. Cupric ion chelating capacity was also assessed with spectroscopic analysis, and quercetin presented the largest chelating capacity among the tested flavonoids. Hydroxyl radical formation was assessed with a luminol reaction, and quercetin presented faster consumption of luminol. These results suggest that the 3­position hydroxyl group of the C ring is required to induce DNA damage at low temperatures. Furthermore, the results of the present study also indicated that the presence of cupric ions will decrease the activity of the glycosylated quercetins, in terms of their ability to induce DNA damage.


Assuntos
Cobre/farmacologia , Dano ao DNA , DNA de Cadeia Simples/metabolismo , Flavonoides/química , Flavonoides/farmacologia , Radical Hidroxila/química , Quelantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Íons , Luminol/metabolismo , Oxirredução
14.
J Biol Rhythms ; 21(1): 33-44, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16461983

RESUMO

Circadian rhythms in Syrian hamsters can be phase advanced by activity or arousal stimulated during the daily rest phase ("subjective day"). A widely used method for stimulating activity is confinement to a novel wheel. Some hamsters decline to run, and some procedures may reduce the probability of running. The authors evaluated food deprivation (FD) as a method to promote running. Given evidence that perturbations of cell metabolism or glucose availability may affect circadian clock function in some tissues or species, they also assessed the effects of FD on free-running circadian phase, resetting responses to photic and nonphotic stimuli and plasma glucose. In constant light, a 27-h fast significantly increased running in a novel wheel and marginally increased the average size of resulting phase shifts. FD, without novel wheel confinement, was associated with some very large phase shifts or disruption of rhythmicity in hamsters that spontaneously ran in their home wheels during the subjective day. Hamsters that ran only during the usual active phase (subjective night) or that were prevented from running did not exhibit phase shifts, despite refeeding in the mid-subjective day. Using an Aschoff Type II design for measuring shifts, a 27-h fast significantly increased the number of hamsters that ran continuously when confined to a novel wheel but did not affect the dose-response relation between the amount of running and the size of the resulting shift. A day of fasting also did not affect the size of phase delay or advance shifts to 30-min light pulses in the subjective night. Plasma glucose was markedly reduced by wheel running in combination with fasting but was increased by running in nonfasted hamsters. These results establish FD as a useful tool for stimulating activity in home cage or novel wheels and indicate that in Syrian hamsters, significant alterations in glucose availability, associated with running, fasting, and refeeding, have surprisingly little effect on circadian pacemaker function.


Assuntos
Glicemia/metabolismo , Ritmo Circadiano/fisiologia , Privação de Alimentos/fisiologia , Atividade Motora/fisiologia , Animais , Cricetinae , Masculino , Mesocricetus , Estimulação Luminosa
15.
Pharmaceuticals (Basel) ; 10(4)2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29023372

RESUMO

High consumption of dietary flavonoids might contribute to a reduction of cancer risks. Quercetin and its glycosides have PARP inhibitory effects and can induce selective cytotoxicity in BRCA2-deficient cells by synthetic lethality. We hypothesized that common flavonoids in diet naringenin, hesperetin and their glycosides have a similar structure to quercetin, which might have comparable PARP inhibitory effects, and can induce selective cytotoxicity in BRCA2-deficient cells. We utilized Chinese hamster V79 wild type, V-C8 BRCA2-deficient and its gene-complemented cells. In vitro analysis revealed that both naringenin and hesperetin present a PARP inhibitory effect. This inhibitory effect is less specific than for quercetin. Hesperetin was more cytotoxic to V79 cells than quercetin and naringenin based on colony formation assay. Quercetin and naringenin killed V-C8 cells with lower concentrations, and presented selective cytotoxicity to BRCA2-deficient cells. However, the cytotoxicity of hesperetin was similar among all three cell lines. Glycosyl flavonoids, isoquercetin and rutin as well as naringin showed selective cytotoxicity to BRCA2-deficient cells; hesperidin did not. These results suggest that flavonoids with the PARP inhibitory effect can cause synthetic lethality to BRCA2-deficient cells when other pathways are not the primary cause of death.

16.
Sci Rep ; 7(1): 16704, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196727

RESUMO

Rosemary extract is used in food additives and traditional medicine and has been observed to contain anti-tumor activity. In this study, rosemary extract is hypothesized to induce synthetic lethality in BRCA2 deficient cells by PARP inhibition. Chinese hamster lung V79 cells and its mutant cell lines, V-C8 (BRCA2 deficient) and V-C8 with BRCA2 gene correction were used. Rosemary extract and its major constituent chemicals were tested for their cytotoxicity by colony formation assay in cells of different BRCA2 status. The latter chemicals were tested for inhibitory effect of poly (ADP-ribose) polymerase (PARP) activity in vitro and in vivo. Rosemary has shown selective cytotoxicity against V-C8 cells (IC50 17 µg/ml) compared to V79 cells (IC50 26 µg/ml). Among tested chemicals, gallic acid and carnosic acid showed selective cytotoxicity to V-C8 cells along with PARP inhibitory effects. Carnosol showed comparative PARP inhibitory effects at 100 µM compared to carnosic acid and gallic acid, but the selective cytotoxicity was not observed. In conclusion, we predict that within rosemary extract two specific constituent components; gallic acid and carnosic acid were the cause for the synthetic lethality.


Assuntos
Proteína BRCA2/genética , Extratos Vegetais/química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Rosmarinus/química , Abietanos/química , Abietanos/isolamento & purificação , Abietanos/farmacologia , Animais , Proteína BRCA2/deficiência , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cinamatos/química , Cinamatos/isolamento & purificação , Cinamatos/farmacologia , Cricetinae , Cricetulus , Dano ao DNA/efeitos dos fármacos , Depsídeos/química , Depsídeos/isolamento & purificação , Depsídeos/farmacologia , Extratos Vegetais/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Rosmarinus/metabolismo , Ácido Rosmarínico
17.
Int J Mol Med ; 38(5): 1525-1530, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28025998

RESUMO

Novel glucosyl flavonoids are developed by the addition of glucose to naturally occurring flavonoids. Flavonoids are known antioxidants that possess radioprotective properties. In order to investigate the radioprotective properties of novel glucosyl flavonoids, in vitro DNA double-strand breaks (DSBs) analysis was carried out. In the present study, Quercetin, Naringenin, and Hesperetin groups of flavonoids included in the natural and novel glucosyl 13 flavonoids were investigated. Flavonoids were mixed with Lambda DNA, and subsequently exposed to gamma­rays. Furthermore, DNA DSB yields were visualized by gel electrophoresis. Quercetin derivatives displayed reduced DNA DSB formation at 10 µM. At a high concentration, the majority of flavonoids displayed radioprotective properties as a reduction of DSB yields. Suppression of DSB formation was confirmed via the molecular combing assay for Quercetin, and three monoglucosyl flavonoids. Glucosylation showed positive effects for radioprotection and monoglucosyl-Rutin showed superior radioprotective properties when compared to monoglucosyl-Naringin and Hesperidin. In addition, Quercetin derivatives had greater total antioxidant capacities and DPPH radical scavenging ability than other flavonoid groups. Since Quercetin, Isoquercetin, and Rutin display poor water solubility, monoglucosyl-Rutin, maltooligosyl-Isoquercetin, and maltooligosyl-Rutin may be better radioprotective agents and easily bioavailable with increased water solubility.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Flavonoides/análise , Flavonoides/farmacologia , Protetores contra Radiação/análise , Protetores contra Radiação/farmacologia , Antioxidantes/análise , Compostos de Bifenilo/química , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Eletroforese em Gel de Ágar , Flavonoides/química , Sequestradores de Radicais Livres/química , Glicosilação/efeitos dos fármacos , Nefelometria e Turbidimetria , Picratos/química , Protetores contra Radiação/química
18.
Data Brief ; 6: 262-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26862569

RESUMO

The flavonoids quercetin, and its natural glycosides isoquercetin and rutin, are phytochemicals commonly consumed in plant-derived foods and used as a food beverage additive. Semi-synthetic maltooligosyl isoquercetin, monoglucosyl rutin and maltooligosyl rutin were developed by synthetic glycosylation to improve their water solubility for food and other applications. Using a system of Chinese hamster ovary (CHO) cells, this study examined the differences in cytotoxic responses induced by short and continuous exposure of natural and synthetic flavonoids. By assessing cell viability after short term exposure and clonogenicity with continuous exposure under various flavonoids, quercetin aglycone is confirmed to be the most cytotoxic flavonoids, and heavily glucosylated maltooligosyl rutin was the least cytotoxic. The other heavily glucosylated maltooligosyl isoquercetin showed intermediate cytotoxicity and similar toxicity as isoquercetin.

19.
Antivir Ther ; 17(6): 993-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22837442

RESUMO

BACKGROUND: The selection of antiretroviral (ARV) drugs for treatment of HIV-1 infection is based on several factors including potency, toxicity, resistance and ease of administration. Emtricitabine (FTC) or lamivudine (3TC), components of recommended initial ARV regimens, are structurally related and share the same resistance mutation (M184V/I). However they differ with respect to potency and incidence of M184V/I. METHODS: Resistance-associated mutation (RAM) prevalence data were obtained from genotype test results performed in a large reference laboratory from 2003-2010; subsets of data were defined by mutation pattern to resemble those following failure of non-nucleoside reverse transcriptase inhibitor (NNRTI)-based combination therapy. Mutational trend data were compared to contemporaneous ARV prescription information. RESULTS: In the unfiltered data set (n=107,231), the prevalence in 2010 decreased compared to 2003 for all nucleoside/nucleotide reverse transcriptase inhibitor (NRTI) RAMs, such as M184V/I (44.0% to 17.9%), T215Y (22.7% to 4.1%), and K65R (4.3% to 2.1%). Among samples resembling those typical of first-line NNRTI-based failures, prevalence of K103N increased slightly, but prevalence of M184V/I decreased (49.8% to 36.8%), as did other NRTI RAMs. These decreases were coincident with a shift in ARV prescriptions away from zidovudine and 3TC towards tenofovir and FTC, and an increase in use of fixed-dose combinations. CONCLUSIONS: RAM prevalence decreased substantially since 2003 among samples submitted for resistance testing in the US. The causes of this decrease are multifactorial, but our results suggest a possible role of increased use of potent ARVs that are available as fixed-dose combinations or as single-tablet regimens.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral , Transcriptase Reversa do HIV/genética , Mutação , Inibidores da Transcriptase Reversa/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Prescrições de Medicamentos/estatística & dados numéricos , Quimioterapia Combinada , Emtricitabina , Genótipo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Lamivudina/farmacologia , Organofosfonatos/farmacologia , Prevalência , Tenofovir , Falha de Tratamento , Zidovudina/farmacologia
20.
PLoS One ; 7(12): e52761, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285178

RESUMO

Insecticide resistance is a model phenotype that can be used to investigate evolutionary processes underlying the spread of alleles across a global landscape, while offering valuable insights into solving the problems that resistant pests present to human health and agriculture. Pyrethroids are one of the most widely used classes of insecticides world-wide and they exert their toxic effects through interactions with the voltage-sensitive sodium channel (Vssc). Specific mutations in Vssc (kdr, kdr-his and super-kdr) are known to cause resistance to pyrethroid insecticides in house flies. In order to determine the number of evolutionary origins of kdr, kdr-his and super-kdr, we sequenced a region of Vssc from house flies collected in the USA, Turkey and China. Our phylogenetic analysis of Vssc unequivocally supports the hypothesis of multiple independent origins of kdr, super-kdr and kdr-his on an unprecedented geographic scale. The implications of these evolutionary processes on pest management are discussed.


Assuntos
Moscas Domésticas/efeitos dos fármacos , Moscas Domésticas/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mutação , Canais de Sódio Disparados por Voltagem/genética , Alelos , Animais , Feminino , Haplótipos , Moscas Domésticas/classificação , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa