Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(25): 17170-17179, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38865584

RESUMO

Selective activation of C-H bonds in light alkanes under mild conditions is challenging but holds the promise of efficient upgrading of abundant hydrocarbons. In this work, we report the conversion of propane to propylene with ∼95% selectivity on Cu(I)-ZSM-5 with O2 at room temperature and pressure. The intraporous Cu(I) species was oxidized to Cu(II) during the reaction but could be regenerated with H2 at 220 °C. Diffuse reflectance ultraviolet spectroscopy indicated the presence of both Cu+-O2 and Cu2(µ-O2)2+ species in the zeolite pores during the reaction, and electron paramagnetic resonance results showed that propane activation occurred via a radical-mediated pathway distinct from that with H2O2 as the oxidant. Correlation between spectroscopic and reactivity results on Cu(I)-ZSM-5 with different Cu loadings suggests that the isolated intraporous Cu(I) species is the main active species in propane activation.

2.
Angew Chem Int Ed Engl ; 61(39): e202207197, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35941760

RESUMO

Developing efficient catalytic systems for the hydrogen oxidation and evolution reactions (HOR/HER) is essential in the world's transition to renewable energy. There is a growing recognition that the HOR/HER activity depends on properties of the electrochemical interface, rather than just the composition and structure of the catalyst. Herein, we demonstrate that specifically adsorbed organic additives (theophylline derivatives) could enhance the intrinsic HOR/HER activity in base on polycrystalline Pt by up to a factor of 3 via introducing weakly hydrogen-bonded water, as confirmed by in situ surface enhanced infrared and Raman spectroscopies. Optimal HOR/HER activity is achieved on a 7-n-butyltheophylline decorated Pt surface, which sufficiently disrupts the hydrogen bonding network in the double layer without depleting the interfacial water. This work demonstrates the promise of electrochemical interfacial engineering as a strategy to boost electrocatalytic performance.


Assuntos
Platina , Teofilina , Hidrogênio/química , Ligação de Hidrogênio , Cinética , Platina/química , Água
3.
J Am Chem Soc ; 142(3): 1341-1347, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31893500

RESUMO

Active oxygen species (AOS) play key roles in many important catalytic reactions relevant to clean energy and environment. However, it remains challenging to characterize the active sites for producing AOS and to image the surface properties of AOS, especially on multicomponent metallic catalyst surfaces. Herein, we utilize tip-enhanced Raman spectroscopy (TERS) to probe the local generation and diffusion of OH radicals on a Pd/Au(111) bimetallic catalyst surface. The reactive OH radicals can be catalytically generated from hydrogen peroxide (H2O2) at the metal surface, which then oxidizes the surface adsorbed thiolate, a reactant that is used as the TERS probe. By TERS imaging of the spatial distribution of unreacted thiolate molecules, we demonstrate that the Pd surface is active for generation of OH radicals and the Pd step edge shows much higher activity than the Pd terrace, whereas the Au surface is inactive. Furthermore, we find that the locally generated OH radicals at the Pd step edge could diffuse to both the Au and the Pd surface sites to induce oxidative reactions, with a diffusion length estimated to be about 5.4 nm. Our TERS imaging with few-nanometer spatial resolution not only unravels the active sites but also characterizes in real space the diffusion behavior of OH radicals. The results are highly valuable to understand AOS-triggered catalytic reactions. The strategy of using reactants with large Raman cross sections as TERS probes may broaden the application of TERS for studying catalysis with reactive small molecules.

4.
J Chem Phys ; 153(17): 170901, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33167627

RESUMO

Dynamics are fundamental to all aspects of chemistry and play a central role in the mechanism and product distribution of a chemical reaction. All dynamic processes are influenced by the local environment, so it is of fundamental and practical value to understand the structure of the environment and the dynamics with nanoscale resolution. Most techniques for measuring dynamic processes have microscopic spatial resolution and can only measure the average behavior of a large ensemble of sites within their sampling volumes. Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for overcoming this limitation due to its combination of high chemical specificity and spatial resolution that is on the nanometer scale. Adapting it for the study of dynamic systems remains a work in progress, but the increasing sophistication of TERS is making such studies more routine, and there are now growing efforts to use TERS to examine more complex processes. This Perspective aims to promote development in this area of research by highlighting recent progress in using TERS to understand reacting and dynamic systems, ranging from simple model reactions to complex processes with practical applications. We discuss the unique challenges and opportunities that TERS presents for future studies.

5.
Chem Soc Rev ; 46(13): 4020-4041, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28590479

RESUMO

Surface and interfaces play key roles in heterogeneous catalysis, electrochemistry and photo(electro)chemistry. Tip-enhanced Raman spectroscopy (TERS) combines plasmon-enhanced Raman spectroscopy with scanning probe microscopy to simultaneously provide a chemical fingerprint and morphological information for the sample at the nanometer spatial resolution. It is an ideal tool for achieving an in-depth understanding of the surface and interfacial processes, so that the relationship between structure and chemical performance can be established. We begin with the background of surfaces and interfaces and TERS, followed by a detailed discussion on some issues in experimental TERS, including tip preparation and TERS instrument configuration. We then focus on the progress of TERS for studying the surfaces and interfaces under different conditions, from ambient, to UHV, solid-liquid and electrochemical environments, followed by a brief introduction to the current understanding of the unprecedented high spatial resolution and surface selection rules. We conclude by discussing the future challenges for TERS practical applications in surfaces and interfaces.

6.
Angew Chem Int Ed Engl ; 57(40): 13177-13181, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30133087

RESUMO

Resolving atomic site-specific electronic properties and correlated substrate-molecule interactions is challenging in real space. Now, mapping of sub-10 nm sized Pt nanoislands on a Au(111) surface was achieved by tip-enhanced Raman spectroscopy, using the distinct Raman fingerprints of adsorbed 4-chlorophenyl isocyanide molecules. A spatial resolution better than 2.5 nm allows the electronic properties of the terrace, step edge, kink, and corner sites with varying coordination environments to be resolved in real space in one Pt nanoisland. Calculations suggest that low-coordinate atomic sites have a higher d-band electronic profile and thus stronger metal-molecule interactions, leading to the observed blue-shift of Raman frequency of the N≡C bond of adsorbed molecules. An experimental and theoretical study on Pt(111) and mono- and bi-atomic layer Pt nanoislands on a Au(111) surface reveals the bimetallic effect that weakens with the increasing number of deposited Pt adlayer.

7.
Angew Chem Int Ed Engl ; 57(25): 7523-7527, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29645335

RESUMO

Tip-enhanced Raman spectroscopy can provide molecular fingerprint information with ultrahigh spatial resolution, but the tip will be easily contaminated, thus leading to artifacts. It also remains a great challenge to establish tip-enhanced fluorescence because of the quenching resulting from the proximity of the metal tip. Herein, we report shell-isolated tip-enhanced Raman and fluorescence spectroscopies by employing ultrathin shell-isolated tips fabricated by atomic layer deposition. Such shell-isolated tips not only show outstanding electromagnetic field enhancement in TERS but also exclude interference by contaminants, thus greatly promoting applications in solution. Tip-enhanced fluorescence has also been achieved using these shell-isolated tips, with enhancement factors of up to 1.7×103 , consistent with theoretical simulations. Furthermore, tip-enhanced Raman and fluorescence signals are acquired simultaneously, and their relative intensities can be manipulated by changing the shell thickness. This work opens a new avenue for ultrahigh resolution surface analysis using plasmon-enhanced spectroscopies.

8.
ACS Omega ; 7(17): 15223-15230, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35572747

RESUMO

Breast cancer appears to be one of the leading causes of cancer-related morbidity and mortality for women worldwide. The accurate and rapid diagnosis of breast cancer is hence critical for the treatment and prognosis of patients. With the vibrational fingerprint information and high detection sensitivity, surface-enhanced Raman spectroscopy (SERS) has been extensively applied in biomedicine. Here, an optimized bimetallic nanosphere (Au@Ag NS) 3D substrate was fabricated for the aim of the diagnosis of breast cancer based on the SERS analysis of the extracellular metabolites. The unique stacking mode of 3D Au@Ag NSs provided multiple plasmonic hot spots according to the theoretical calculations of the electromagnetic field distribution. The low relative standard deviation (RSD = 2.7%) and high enhancement factor (EF = 1.42 × 105) proved the uniformity and high sensitivity. More importantly, the normal breast cells and breast cancer cells could be readily distinguished from the corresponding SERS spectra based on the extracellular metabolites. Furthermore, the clear clusters of SERS spectra from MCF-7 and MDA-MB-231 extracellular metabolites in the orthogonal partial least-squares discriminant analysis plot indicate the distinct metabolic fingerprint between breast cancer cells, which imply their potential clinical application in the diagnosis of breast cancer.

9.
Chem Sci ; 13(36): 10884-10890, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36320703

RESUMO

Interfacial pH is critical to electrocatalytic reactions involving proton-coupled electron transfer (PCET) processes, and maintaining an optimal interfacial pH at the electrochemical interface is required to achieve high activity. However, the interfacial pH varies inevitably during the electrochemical reaction owing to slow proton transfer at the interfacial layer, even in buffer solutions. It is therefore necessary to find an effective and general way to promote proton transfer for regulating the interfacial pH. In this study, we propose that promoting proton transfer at the interfacial layer can be used to regulate the interfacial pH in order to enhance electrocatalytic activity. By adsorbing a bifunctional 4-mercaptopyridine (4MPy) molecule onto the catalyst surface via its thiol group, the pyridyl group can be tethered on the electrochemical interface. The pyridyl group acts as both a good proton acceptor and donor for promoting proton transfer at the interfacial layer. Furthermore, the pK a of 4MPy can be modulated with the applied potentials to accommodate the large variation of interfacial pH under different current densities. By in situ electrochemical surface-enhanced Raman spectroscopy (in situ EC-SERS), we quantitatively demonstrate that proton transfer at the interfacial layer of the Pt catalyst coated with 4MPy (Pt@4MPy) remains ideally thermoneutral during the H+ releasing electrocatalytic oxidation reaction of formic acid (FAOR) at high current densities. Thus, the interfacial pH is controlled effectively. In this way, the FAOR apparent current measured from Pt@4MPy is twice that measured from a pristine Pt catalyst. This work establishes a general strategy for regulating interfacial pH to enhance the electrocatalytic activities.

10.
Nanoscale ; 13(33): 13962-13975, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34477677

RESUMO

Metallic nanostructures exhibit superior catalytic performance for diverse chemical reactions and the in-depth understanding of reaction mechanisms requires versatile characterization methods. Plasmon-enhanced Raman spectroscopy (PERS), including surface-enhanced Raman spectroscopy (SERS), shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), and tip-enhanced Raman spectroscopy (TERS), appears as a powerful technique to characterize the Raman fingerprint information of surface species with high chemical sensitivity and spatial resolution. To expand the range of catalytic reactions studied by PERS, catalytically active metals are integrated with plasmonic metals to produce bifunctional metallic nanostructures. In this minireview, we discuss the recent advances in PERS techniques to probe the chemical reactions catalysed by bifunctional metallic nanostructures. First, we introduce different architectures of these dual-functionality nanostructures. We then highlight the recent works using PERS to investigate important catalytic reactions as well as the electronic and catalytic properties of these nanostructures. Finally, we provide some perspectives for future PERS studies in this field.

11.
J Phys Chem Lett ; 10(10): 2306-2312, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31013094

RESUMO

In the field of surface plasmon-mediated photocatalysis, the coupling reactions of p-aminothiophenol (PATP) and p-nitrothiophenol (PNTP) to produce p, p'-dimercaptoazobenzene (DMAB) are the most widely investigated systems. However, a clear understanding of the structure-function relationship is still required. Here, we used tip-enhanced Raman spectroscopy (TERS) to study the coupling reactions of PATP and PNTP on well-defined Ag(111) and Au(111) surfaces using 632.8 and 532 nm lasers. On Au(111), the oxidative coupling of PATP can proceed under irradiation by a 632.8 nm laser, and the reductive coupling of PNTP can only occur under irradiation by a 532 nm laser. Neither wavelength of laser light can induce the coupling reactions of these two molecules on Ag(111). Density functional theory (DFT) was used to calculate the stable adsorption configurations of PATP and PNTP on Ag(111) and Au(111). Both the adsorption configurations of the two molecules on the surfaces and laser energies were, experimentally and theoretically, found to determine whether the coupling reactions can occur on different substrates. These results may help the rational design of photocatalysts with enhanced reactivity.

12.
Nat Nanotechnol ; 12(2): 132-136, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27870842

RESUMO

An atomic- and molecular-level understanding of heterogeneous catalysis is required to characterize the nature of active sites and improve the rational design of catalysts. Achieving this level of characterization requires techniques that can correlate catalytic performances to specific surface structures, so as to avoid averaging effects. Tip-enhanced Raman spectroscopy combines scanning probe microscopy with plasmon-enhanced Raman scattering and provides simultaneous topographical and chemical information at the nano/atomic scale from ambient to ultrahigh-vacuum and electrochemical environments. Therefore, it has been used to monitor catalytic reactions and is proposed to correlate the local structure and function of heterogeneous catalysts. Bimetallic catalysts, such as Pd-Au, show superior performance in various catalytic reactions, but it has remained challenging to correlate structure and reactivity because of their structural complexity. Here, we show that TERS can chemically and spatially probe the site-specific chemical (electronic and catalytic) and physical (plasmonic) properties of an atomically well-defined Pd(sub-monolayer)/Au(111) bimetallic model catalyst at 3 nm resolution in real space using phenyl isocyanide as a probe molecule (Fig. 1a). We observe a weakened N≡C bond and enhanced reactivity of phenyl isocyanide adsorbed at the Pd step edge compared with that at the Pd terrace. Density functional theory corroborates these observations by revealing a higher d-band electronic profile for the low-coordinated Pd step edge atoms. The 3 nm spatial resolution we demonstrate here is the result of an enhanced electric field and distinct electronic properties at the step edges.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa