Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Environ Sci Technol ; 58(23): 10185-10194, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38804824

RESUMO

The relaxation of restrictions on Chinese Spring Festival (SF) firework displays in certain regions has raised concerns due to intensive emissions exacerbating air quality deterioration. To evaluate the impacts of fireworks on air quality, a comparative investigation was conducted in a city between 2022 (restricted fireworks) and 2023 SF (unrestricted), utilizing high time-resolution field observations of particle chemical components and air quality model simulations. We observed two severe PM2.5 pollution episodes primarily triggered by firework emissions and exacerbated by static meteorology (contributing approximately 30%) during 2023 SF, contrasting with its absence in 2022. During firework displays, freshly emitted particles containing more primary inorganics (such as chloride and metals like Al, Mg, and Ba), elemental carbon, and organic compounds (including polycyclic aromatic hydrocarbons) were predominant; subsequently, aged particles with more secondary components became prevalent and continued to worsen air quality. The primary emissions from fireworks constituted 54% of the observed high PM2.5 during the displays, contributing a peak hourly PM2.5 concentration of 188 µg/m3 and representing over 70% of the ambient PM2.5. This study underscores that caution should be exercised when igniting substantial fireworks under stable meteorological conditions, considering both the primary and potential secondary effects.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Férias e Feriados , Hidrocarbonetos Policíclicos Aromáticos/análise
2.
Water Sci Technol ; 84(8): 1919-1929, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34695020

RESUMO

Photocatalysis has been regarded as a kind of environmentally friendly advanced oxidation process to eliminate pollutants. In this work, Phosphorus-doped carbon nitride tube (PCN) was synthesized via a hydrothermal calcination method and applied to degrade tetracycline (TC) through combing with peroxydisulfate (PDS) under visible light irradiation. Experimental results showed that the optimized catalysts PCN-5 exhibited superior degradation performance and reusability for TC degradation. 96.4% TC could be degraded for optimal PCN-5 with 0.3 g·L-1 catalysts and 1.0 g·L-1 PDS under visible light within 60 min. In addition, the degradation rate constant for TC of PCN + PDS + Vis system was still above 85% after five uses. Radical trapping experiment indicating that O2·- is the dominant radical for TC degradation. The findings of this work revealed the potential application of the PCN + PDS + Vis system toward degrading contaminants in wastewater.


Assuntos
Fósforo , Tetraciclina , Antibacterianos , Catálise , Luz , Nitrilas
3.
Chemosphere ; 313: 137429, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36462565

RESUMO

Substrate clogging is one of the major operation challenges of subsurface flow constructed wetlands (SSF-CWs). And the phosphorus (P) removal performance and stability of P accumulation of SSF-CWs would be varied with the development of substrate clogging. In this study, three horizontal SSF-CWs microcosms with different clogging degrees were conducted to explore the mechanism of P accumulation behavior influenced by substrate clogging. Increase in clogging degree resulted in hydraulic retention time (HRT) diminution and adsorption sites increase, which jointly led to reduced P removal efficiency at low clogging degree (L-CW), however, higher P removal efficiency was obtained as adsorption sites increase offset HRT diminution at high clogging degree (H-CW). Substrate adsorption was the primary removal pathway in all SSF-CW systems. It accounted for 77.86 ± 2.63% of the P input in the H-CW, significantly higher than the control (60.08 ± 4.79%). This was attributed to a higher proportion of Fe/Al-P accumulated on the substrate of H-CW, since clogging aggravated the anaerobic condition and promoted the generation of Fe ions. The increase in clogging degree also elevated the release risk of the accrued P in SSF-CWs, since Fe/Al-P was considered bioavailable and readily released under environmental disturbance. The obtained results provide new insights into the P transport and transformation in SSF-CWs and would be helpful to optimize substrate clogging management.


Assuntos
Eliminação de Resíduos Líquidos , Áreas Alagadas , Eliminação de Resíduos Líquidos/métodos , Fósforo/metabolismo
4.
iScience ; 26(11): 108317, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026147

RESUMO

Nitrogenous organic (CHON), crucial for secondary organic aerosol (SOA), forms through poorly studied mechanisms in clouds. Our study explores CHON transformation during cloud processes (CPs). These processes play a vital role in enhancing the variety of CHONs, leading to the formation of CHONs with oxygen atom counts ranging from 1 to 10 and double bond equivalent (DBE) values spanning from 2 to 10. We proposed that the CHONs formed during CPs are formed through aqueous phase reactions with CHO compound precursors via nucleophilic attacks by NH3. This scheme can be account for roughly three-quarters of the CHONs by number in cloud water, and near two-thirds of all CHONs are formed through reactions between NH3 and carbonyl-containing biogenic volatile organic compound (BVOC) ozonolysis intermediates. This study provides the first insights into the evolution of CHONs during CPs and reveals the significant roles of CPs in the formation of CHONs.

5.
Sci Total Environ ; 823: 153619, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35124032

RESUMO

The treatment of hypersaline oilfield wastewater (HSOW) is a challenge due to its complex composition and low biodegradability, especially in coastal areas. In this study, an HSOW treatment system of gas flotation and biochemistry technology combined with constructed wetland (CW) was investigated. The combined treatment system could efficiently remove COD, NH4+-N and oil under high salinity (1.36-2.21 × 104 mg/L), with average removal rates of 98.5%, 99.9% and 96%, respectively. Meanwhile, different salinity shaped particular community structures and functions. The abundance of Marivita, Parvibaculum, etc. was highly correlated with salinity. Co-occurrence network resulted that the microorganisms were highly interconnected, and formed a functional group of petroleum degrading. Pseudomonas, Rosevarius, Alternaria, etc. were the key genera. Moreover, functional prospected revealed that high salinity reduced the energy metabolism activity. This study will optimize the combined process and provide the basis for further extraction of high-efficiency degradation strains for HSOW enhanced treatment.


Assuntos
Poluentes Ambientais , Purificação da Água , Campos de Petróleo e Gás , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Áreas Alagadas
6.
Sci Rep ; 6: 31797, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27535800

RESUMO

Treatment of azo dye effluents has received increasing concerns over the years due to their potential harms to natural environment and human health. The present study described the degrading ability of the as-synthesized crystalline Al-Cu alloys for removal of high-concentration Acid Scarlet 3R in alkaline aqueous solutions and its degradation mechanism. Al-Cu alloy particles with Al/Cu ratios 19:1 were successfully synthesized by high-energy mechanical milling. Characterization results showed that 10 h mechanical alloying process could lead to the formation of crystalline Al(Cu) solid solution. Batch experiment results confirmed the excellent ability of Al-Cu alloy particles for the degradation of 3R in aqueous solution. Under a certain condition ([Al-Cu]0 = 2 g/L, [3R]0 = 200 mg/L, [NaCl]0 = 25 g/L, initial pH = 10.9), the 3R could be completely degraded within only 3 min. It was also found that the degradation reaction followed zero-order kinetics model with respect to the initial dye concentration. The intermediate compounds were identified by UV-vis, FT-IR and HPLC-MS, and a pathway was proposed. Additionally, post-treatment Al-Cu alloy particles were characterized by SEM and TEM, and the results showed that the degradation might be attributed to the corrosion effect of Al-Cu alloys.

7.
Environ Sci Pollut Res Int ; 21(22): 12767-79, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24969433

RESUMO

Treatment and disposal of fly ash in China are becoming increasingly difficult, since its production has steadily risen and its features are uncertain. The excess pollutant components of fly ash are the key factor affecting its treatment and resource utilization. In this study, fly ash samples collected from a power plant with circulating fluidized incinerators of municipal solid waste (MSW) located in Shandong Province (eastern China) were studied. The results showed that there were no obvious seasonal differences in properties of fly ash. The content of total salt, Zn, and pH exceeded the national standards and low-ring polycyclic aromatic hydrocarbons (PAHs) and polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (Fs) were the main organic components of fly ash for this power plant, which posed great threats to the surrounding environment. The amount of Zn of fly ash was higher than other heavy metals, which should be due to alkaline batteries of MSW. The leachate of fly ash had low concentrations of heavy metals and the main soluble components were sulfates and chlorides. The major mineral crystals of fly ash were SiO2, CaSO4, and Fe2O3. The main organic pollutants were low-ring PAHs, polychlorinated PCDDs, and low-chlorinated PCDFs, and concentrations were lower than the limiting values of the national regulations. Additionally, the distribution of PCDD/Fs had either a positive or a negative linear correlation with fly ash and flue gas, which was associated with the chlorinated degree of PCDD/Fs. The analysis was conducted to fully understand the properties of fly ash and to take appropriate methods for further comprehensive utilization.


Assuntos
Cinza de Carvão/análise , Poluentes Ambientais/análise , Benzofuranos/análise , Sulfato de Cálcio/análise , Compostos Férricos/análise , Concentração de Íons de Hidrogênio , Incineração , Metais Pesados/análise , Dibenzodioxinas Policloradas/análogos & derivados , Dibenzodioxinas Policloradas/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Dióxido de Silício/análise , Resíduos Sólidos
9.
J Am Chem Soc ; 129(1): 42-3, 2007 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-17199279

RESUMO

Supported Au nanoclusters are well-known for their unusual properties in catalysis. We describe here that nanostructured porous Au made via dealloying represents a new class of unsupported catalysts with extraordinary activities in important reactions such as CO oxidation. Although nanoporous Au may contain some oxides on the surface, our results demonstrate that it is metallic Au that plays the main role in this catalytic reaction. Furthermore, this material has good low-temperature catalytic stability and is extremely CO tolerant.

10.
Acta Biochim Biophys Sin (Shanghai) ; 38(11): 747-52, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17091190

RESUMO

Caveolin-1 is regulated by estrogen in vascular smooth muscle cells. Raloxifene, a selective estrogen receptor modulator that possibly has cardioprotective properties without an increased risk of cancer or other side effects of estrogen, may be used in women with risk of coronary artery disease. However, the relationship between raloxifene and caveolin-1 is still unknown. Therefore, this study was designed to see whether raloxifene regulates caveolin-1 expression and if so, whether such regulation is mediated by estrogen receptor. Rat aortic smooth muscle cells were cultured in the absence or presence of raloxifene (10(8-) to 10(6-) M) for 12 or 24 h. Both mRNA and protein levels of caveolin-1 were increased significantly after 24 h treatment with raloxifene. These increases were inhibited by estrogen receptor antagonist ICI 182780 (10(5-) M). Results of this study suggest that raloxifene stimulates caveolin-1 transcription and translation through estrogen receptor mediated mechanisms.


Assuntos
Cardiotônicos/farmacologia , Caveolina 1/biossíntese , Miócitos de Músculo Liso/efeitos dos fármacos , Cloridrato de Raloxifeno/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Animais , Aorta/citologia , Células Cultivadas , Estradiol/análogos & derivados , Estradiol/farmacologia , Feminino , Fulvestranto , Regulação da Expressão Gênica , Miócitos de Músculo Liso/metabolismo , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Receptores de Estrogênio/agonistas , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa