Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2401283, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924314

RESUMO

Fibrillated cellulose-based nanocomposites can improve energy efficiency of building envelopes, especially windows, but efficiently engineering them with a flexible ability of lighting and thermal management remains highly challenging. Herein, a scalable interfacial engineering strategy is developed to fabricate haze-tunable thermal barrier films tailored with phosphorylated cellulose nanofibrils (PCNFs). Clear films with an extremely low haze of 1.6% (glass-scale) are obtained by heat-assisted surface void packing without hydrophobization of nanocellulose. PCNF gel cakes serve here as templates for surface roughening, thereby resulting in a high haze (73.8%), and the roughened films can block heat transfer by increasing solar reflection in addition to a reduced thermal conduction. Additionally, obtained films can tune distribution of light from visible to near-infrared spectral range, enabling uniform colored lighting and inhibiting localized heating. Furthermore, an integrated simulation of lighting and cooling energy consumption in the case of office buildings shows that the film can reduce the total energy use by 19.2-38.1% under reduced lighting levels. Such a scalable and versatile engineering strategy provides an opportunity to endow nanocellulose-reinforced materials with tunable optical and thermal functionalities, moving their practical applications in green buildings forward.

2.
Chembiochem ; 25(17): e202400370, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38923146

RESUMO

Amino acids are not only the building blocks of proteins but also lead to the development of novel nanomaterials with unique properties. Herein, we proposed a simple strategy to produce gold nanoparticles (Au NPs) with peroxidase-like (POD-like) activities by using a series of amino acids as reducing agents, named Au NPs@M (M represents different amino acids). The Au NPs@His was identified as the nanozyme with the most potent catalytic performance, which was used in combination with smartphones to achieve rapid detection of hydrogen peroxide with a detection limit of 0.966 µM. It also enables rapid detection of glucose with a detection limit of 2.904 µM, highlighting the significant contribution of Au NPs@His in expediting the detection of critical biomolecules. This work not only provides a convenient and highly efficient method to identify glucose but also shows the potential of histidine as a reducing agent in constructing Au nanomaterials exerting enzyme-like catalysis.


Assuntos
Aminoácidos , Glucose , Ouro , Peróxido de Hidrogênio , Nanopartículas Metálicas , Smartphone , Ouro/química , Nanopartículas Metálicas/química , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Aminoácidos/química , Aminoácidos/análise , Glucose/análise , Técnicas Biossensoriais , Catálise , Limite de Detecção , Histidina/análise , Histidina/química
3.
Anal Biochem ; 689: 115494, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403258

RESUMO

Invasive Aspergillosis is a high-risk illness with a high death rate in immunocompromised people due to a lack of early detection and timely treatment. Based on immunology study, we achieved an efficient production of anti-galactomannan antibody by Chinese hamster ovary (CHO) cells and applied it to time-resolved fluoroimmunoassay for Aspergillus galactomannan detection. We first introduced dual promoter expression vector into CHO host cells, and then applied a two-step screening strategy to screen the stable cell line by methionine sulfoximine pressurization. After amplification and fermentation, antibody yield reached 4500 mg/L. Then we conjugated the antibodies with fluorescent microspheres to establish a double antibody sandwich time-resolved fluoroimmunoassay, which was compared with the commercial Platelia™ Aspergillus Ag by clinical serum samples. The preformed assay could obtain the results in less than 25 min, with a limit of detection for galactomannan of approximately 1 ng/mL. Clinical results of the two methods showed that the overall percent agreement was 97.7% (95% CI: 96.6%-98.4%) and Cohen's kappa coefficient was 0.94. Overall, the assay is highly consistent with commercial detection, providing a more sensitive and effective method for the rapid diagnosis of invasive aspergillosis.


Assuntos
Aspergilose , Aspergillus , Galactose/análogos & derivados , Animais , Cricetinae , Humanos , Células CHO , Cricetulus , Aspergilose/diagnóstico , Mananas , Fluorimunoensaio , Anticorpos Monoclonais
4.
Chem Soc Rev ; 52(5): 1549-1590, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36602188

RESUMO

Biomimetic science has attracted great interest in the fields of chemistry, biology, materials science, and energy. Biomimetic mineralization is the process of synthesizing inorganic minerals under the control of organic molecules or biomolecules under mild conditions. Peptides are the motifs that constitute proteins, and can self-assemble into various hierarchical structures and show a high affinity for inorganic substances. Therefore, peptides can be used as building blocks for the synthesis of functional biomimetic materials. With the participation of peptides, the morphology, size, and composition of mineralized materials can be controlled precisely. Peptides not only provide well-defined templates for the nucleation and growth of inorganic nanomaterials but also have the potential to confer inorganic nanomaterials with high catalytic efficiency, selectivity, and biotherapeutic functions. In this review, we systematically summarize research progress in the formation mechanism, nanostructural manipulation, and applications of peptide-templated mineralized materials. These can further inspire researchers to design structurally complex and functionalized biomimetic materials with great promising applications.


Assuntos
Materiais Biomiméticos , Nanoestruturas , Biomimética , Peptídeos/química , Proteínas , Nanoestruturas/química , Materiais Biomiméticos/química
5.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610339

RESUMO

Antibiotic residues have become a worldwide public safety issue. It is vital to detect multiple antibiotics simultaneously using sensors. A new and efficient method is proposed for the combined detection of two antibiotics (enrofloxacin (Enro) and ciprofloxacin (Cip)) in milk using surface plasmon resonance (SPR) sensors. Based on the principle of immunosuppression, two antibiotic antigens (for Enro and Cip) were immobilized on an optical fiber surface with conjugates of bovine serum albumin using dopamine (DA) polymerization. Each single antigen was bound to its corresponding antibody to derive standard curves for Enro and Cip. The fiber-optic sensor's sensitivity was 2900 nm/RIU. Detection limits were calculated to be 1.20 ng/mL for Enro and 0.81 ng/mL for Cip. The actual system's recovery rate was obtained by testing Enro and Cip in milk samples; enrofloxacin's and ciprofloxacin's mean recoveries from the milk samples were 96.46-120.46% and 96.74-126.9%, respectively. In addition, several different regeneration solutions were tested to analyze the two target analytes' regeneration ability; NaOH and Gly-HCl solutions were found to have the best regeneration ability.


Assuntos
Antibacterianos , Ressonância de Plasmônio de Superfície , Enrofloxacina , Ciprofloxacina , Tecnologia de Fibra Óptica
6.
Small ; 19(1): e2204959, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372545

RESUMO

The self-assembly of peptidyl virus-like nanovesicles (pVLNs) composed of highly ordered peptide bilayer membranes that encapsulate the small interfering RNA (siRNA) is reported. The targeting and enzyme-responsive sequences on the bilayer's surface allow the pVLNs to enter cancer cells with high efficiency and control the release of genetic drugs in response to the subcellular environment. By transforming its structure in response to the highly expressed enzyme matrix metalloproteinase 7 (MMP-7) in cancer cells, it helps the siRNA escape from the lysosomes, resulting in a final silencing efficiency of 92%. Moreover, the pVLNs can serve as reconfigurable "Trojan horse" by transforming into membranes triggered by the MMP-7 and disrupting the cytoplasmic structure, thereby achieving synergistic anticancer effects and 96% cancer cell mortality with little damage to normal cells. The pVLNs benefit from their biocompatibility, targeting, and enzyme responsiveness, making them a promising platform for gene therapy and anticancer therapy.


Assuntos
Nanopartículas , Neoplasias , Sistemas de Liberação de Medicamentos/métodos , Metaloproteinase 7 da Matriz , RNA Interferente Pequeno/genética , Linhagem Celular Tumoral , Peptídeos/química , Nanopartículas/química , Neoplasias/tratamento farmacológico
7.
Langmuir ; 39(9): 3216-3224, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36821815

RESUMO

In this work, we synthesize a series of hierarchically organized gold nanoparticles (Au HOPs-X) with peroxidase (POD)-like catalytic activity by the in situ reduction of Au-thiolate hierarchically organized particles (Au HOPs). The initial Au HOPs show little POD-like catalytic activity. However, after the reduction of the particles, the Au HOPs-X showed enhanced POD-like catalytic activity, where X represents the reduction degree of Au HOPs. The reasons are as follows: (1) the Au-thiolate complexes on the surface of the Au HOPs-X were reduced into Au nanoparticles, and the active Au0 content increases with the increase of the reduction degree; (2) the specific surface area of Au HOPs-X becomes larger. Based on this, the Au HOPs-10 with the highest catalytic activity were combined with glucose oxidase to obtain a standard curve as a function of glucose concentrations. The color of the solutions was captured by mobile phone photos to determine their saturation, and the rapid detection of glucose was achieved through the standard curve of glucose concentration and saturation determined in this study.


Assuntos
Nanopartículas Metálicas , Peroxidase , Ouro , Peroxidases , Glucose
8.
Langmuir ; 39(25): 8779-8786, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37303112

RESUMO

The development of stable multifunctional enzyme mimics with tandem catalytic effects provides a great opportunity to construct economical and convenient bioassays. Inspired by biomineralization, in this work self-assembled N-(9-fluorenylmethoxycarbonyl)-protected tripeptide (Fmoc-FWK-NH2) liquid crystals were used as templates to in situ mineralize Au nanoparticles (AuNPs), and then a dual-functional enzyme-mimicking membrane reactor based on AuNPs and peptide-based hybrids was constructed. AuNPs with a uniform particle size and good dispersion were in situ reduced on the surface of the peptide liquid crystal due to the reduction of the indole group on the tryptophan residue, which exhibited excellent peroxidase-like and glucose oxidase-like activities simultaneously. Meanwhile, the oriented nanofibers aggregated into a three-dimensional network, which was further immobilized on the mixed cellulose membrane to form a membrane reactor. A biosensor was made to realize fast, low-cost, and automatic detection for glucose. This work represents a promising platform for the design and construction of novel multifunctional materials based on the biomineralization strategy.


Assuntos
Técnicas Biossensoriais , Cristais Líquidos , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Peptídeos , Glucose , Técnicas Biossensoriais/métodos
9.
Langmuir ; 39(20): 7212-7220, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37172413

RESUMO

With increasing awareness about the ecological environment, increased attention has been paid to the application of eco-friendly materials in the field of marine antifouling. In this work, a novel coating having good mechanical strength and static marine antifouling characteristics was fabricated using cellulose nanocrystals (CNCs) as the skeleton material, with in situ growth of SiO2 as the basic superhydrophobic material and introducing hexadecyl trimethyl ammonium bromide (CTAB) and 4-bromo2-(4-chlorophenyl)-5-(trifluoromethyl)-1H-pyrrole-3-carbonitrile (Econea) into the coating. Due to the high strength and rod structure of CNCs, the coating maintained super-hydrophobicity after 50 cycles of abrasion tests. Moreover, the addition of CTAB during the synthesis of SiO2 led to the hydrolysis and polycondensation of tetraethyl orthosilicate at the micellar interface. Econea was fully mixed with SiO2 nanoparticles, thus slowing down the rate of release of Econea. Meanwhile, the adhesion between the coating and the substrate reached 1.9 MPa, which can meet the application requirements for marine environments. The bioassay using bacteria (Escherichia coli) and diatoms (Nitzschia closterium) showed that the rate of inhibition of the coating on bacteria and diatoms could reach 99 and 90%, respectively, after immersion in artificial seawater for 28 days. This research provides a facile and promising fabricating solution of an eco-friendly CNC-based coating having strong antifouling characteristics suitable for marine environments.


Assuntos
Incrustação Biológica , Diatomáceas , Desinfetantes , Nanopartículas , Celulose/química , Incrustação Biológica/prevenção & controle , Cetrimônio , Dióxido de Silício , Nanopartículas/química
10.
Langmuir ; 39(21): 7484-7494, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37195813

RESUMO

A transfection formulation is successfully developed to deliver nucleic acids by adding an auxiliary lipid (DOTAP) to the peptide, and the transfection efficiency of pDNA reaches 72.6%, which is close to Lipofectamine 2000. In addition, the designed KHL peptide-DOTAP complex exhibits good biocompatibility by cytotoxicity and hemolysis analysis. The mRNA delivery experiment indicates that the complex had a 9- or 10-fold increase compared with KHL or DOTAP alone. Intracellular localization shows that KHL/DOTAP can achieve good endolysosomal escape. Our design provides a new platform for improving the transfection efficiency of peptide vectors.


Assuntos
Ácidos Nucleicos , Lipossomos , Peptídeos
11.
Ecotoxicol Environ Saf ; 262: 115318, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37531927

RESUMO

Cellulose nanocrystals (CNC) are recognized as promising bio-based flocculants for controlling harmful algal blooms (HABs). Due to the charge shielding effect in seawater and the strong mobility of algae cells, CNC can't effectively remove Phaeocystis globosa from seawater. To solve this problem, peroxymonosulfate (PMS) was used to enhance the coagulation of CNC for rapidly removal of P. globosa. The results showed that 91.7% of Chl-a, 95.2% of OD680, and 97.2% of turbidity of P. globosa were reduced within 3 h with the use of 200 mg L-1 of CNC and 20 mg L-1 of PMS. The removal of P. globosa was consisted of inactivation and flocculation. Notably, electron paramagnetic resonance (EPR) spectrums and quenching experiments revealed that the inactivation of P. globosa was dominated by PMS oxidation and 1O2. Subsequently, CNC entrained inactivated algal cells to settle to the bottom to achieve efficient removal of P. globosa. The content of total organic carbon (TOC) and chemical oxygen demand (COD) decreased significantly, indicating that a low emission risk of algal cell effluent was produced in the CNC-PMS system. In view of the excellent performance on P. globosa removal, we believe that the CNC-PMS system has great potential for HABs treatments.

12.
Sensors (Basel) ; 23(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37430682

RESUMO

In this study, a new temperature sensor with high sensitivity was achieved by four-layer Ge and B co-doped long-period fiber grating (LPFG) based on the mode coupling principle. By analyzing the mode conversion, the influence of the surrounding refractive index (SRI), the thickness and the refractive index of the film on the sensitivity of the sensor is studied. When 10 nm-thick titanium dioxide (TiO2) film is coated on the surface of the bare LPFG, the refractive index sensitivity of the sensor can be initially improved. Packaging PC452 UV-curable adhesive with a high-thermoluminescence coefficient for temperature sensitization can realize high-sensitivity temperature sensing and meet the requirements of ocean temperature detection. Finally, the effects of salt and protein attachment on the sensitivity are analyzed, which provides a reference for the subsequent application. The sensitivity of 3.8 nm/°C in the range of 5-30 °C was achieved for this new sensor, and the resolution is about 0.00026 °C, which is over 20 times higher than ordinary temperature sensors. This new sensor meets the accuracy and range of general ocean temperature measurements and could be used in various marine monitoring and environmental protection applications.

13.
Angew Chem Int Ed Engl ; 62(41): e202309830, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37602955

RESUMO

Covalent regulatory systems of enzymes are widely used to modulate biological enzyme activities. Inspired by the regulation of reactive-site phosphorylation in organisms, we developed peptide-based catecholase mimetics with switchable catalytic activity and high selectivity through the co-assembly of nanofibers comprising peptides and copper ions (Cu2+ ). Through careful design and modification of the peptide backbone structure based on the change in the free energy of the system, we identified the peptide with the most effective reversible catalytic activity. Kinase/phosphatase switches were used to control the reversible transition of nanofiber formation and depolymerization, as well as to modulate the active-site microenvironment. Notably, the self-assembly and disassembly processes of nanofibers were simulated using coarse-grained molecular dynamics. Furthermore, theoretical calculations confirmed the coordination of the peptide and Cu2+ , forming a zipper-like four-ligand structure at the catalytically active center of the nanofibers. Additionally, we conducted a comprehensive analysis of the catalytic mechanism. This study opens novel avenues for designing biomimetic enzymes with ordered structures and dynamic catalytic activities.

14.
Langmuir ; 38(13): 4147-4155, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35315273

RESUMO

In this work, we studied the formation and properties of composite films coassembled by cellulose nanocrystals (CNCs) and bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs). The influences of the BSA-AuNC concentration on the structure and optical properties of CNC-based composite films were further studied. It was found that the composite film retained the chiral nematic structure and optical activity. The self-assembled CNC and BSA-AuNC helical superstructures can produce strong, left-handed, circularly polarized luminescence with dissymmetry factors up to 0.287. Meanwhile, the third component, polyethylene glycol, was introduced without affecting the structural color and fluorescence characteristics of the composite film to enhance the flexibility of the film. The simplicity of the film preparation, the abundance of CNCs, and the flexibility and stability of the composite films pave the way for the production of functional materials with integrated functions.


Assuntos
Celulose , Nanopartículas , Celulose/química , Ouro/química , Luminescência , Nanopartículas/química , Óptica e Fotônica
15.
Langmuir ; 38(48): 14799-14807, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36408767

RESUMO

In this study, peptide-gold nanoclusters with tunable fluorescence were prepared by a simple "one-pot" method, which were used for gene localization and delivery in vivo to achieve efficient intracellular colocalization, uptake, and transfection. The efficiency of pDNA transfection was up to 70.6%, and there was no obvious cytotoxicity. This study proves that the simple-composition and bio-friendly peptide-gold nanoclusters are promising gene delivery carriers and can provide a powerful theoretical and experimental basis for the application of peptide-metal nanocomplexes in gene delivery and other biomedicine fields.


Assuntos
Ouro , Nanopartículas Metálicas , Técnicas de Transferência de Genes , Transfecção , Plasmídeos , Peptídeos
16.
Langmuir ; 38(46): 14261-14268, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36367454

RESUMO

Short peptides could be used as chiral motifs to self-assemble into various artificial nanostructures with supramolecular or nanoscale chirality, but their applications still need to be expanded. Here, under the mediation of metal ions, the ferrocene-diphenylalanine (Fc-LFLF) peptide can self-assemble into various chiral nanostructures, including right-handed helical microflowers mediated by Cu2+, left-handed nanofibers mediated by Ag+, and right-handed nanofibers mediated by Zn2+ and Cd2+. Meanwhile, the gold nanoparticles could be mineralized and deposited on Cu2+/Fc-LFLF microflowers to form AuNPs@Cu2+/Fc-LFLF, which showed significantly improved catalytic activity. The Ag+ could be further mineralized on the peptide nanofibers to form AgNPs@Fc-LFLF, showing an excellent antibacterial effect. Overall, this study provides new insights into the chiral self-assembly of short peptides and demonstrates that the chiral peptide-metal assemblies may have broad prospects in the fields of biocatalysis and antimicrobials.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Dipeptídeos/química , Ouro , Estereoisomerismo , Nanoestruturas/química , Peptídeos
17.
Langmuir ; 38(42): 12849-12858, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36215031

RESUMO

In this study, we construct a green and high-performance platform using Pickering emulsions for biphasic catalysis. The oil-in-water Pickering emulsions stabilized by the lignin/chitosan nanoparticles (Lig/Chi NPs) have great stability and alkali resistance, showing pH-responsive reversible emulsification and demulsification which can be recycled at least three times. The Pickering emulsion also has fluorescence and wide availability to different oil-to-water volume ratios, types of oil, storage times, temperatures, and ion concentrations. When this system is applied to the lipase-catalyzed reaction for the hydrolysis of p-nitrophenol palmitate, it will provide stable and large oil-water reaction interface areas, and the negatively charged lipase will enrich at the emulsion interface by electrostatic adsorption of the positively charged Lig/Chi NPs to achieve immobilization (lipase-Lig/Chi NPs). The reaction conversion rate can reach nearly 100% in 30 min, which is nearly three times higher than that of the conventional two-phase system. Moreover, the lipases in Pickering emulsion stabilized by Lig/Chi NPs exhibit great recyclability because of the protection of Lig/Chi NPs.


Assuntos
Quitosana , Nanopartículas , Emulsões , Lignina , Catálise , Lipase , Água , Álcalis , Palmitatos , Tamanho da Partícula
18.
Sensors (Basel) ; 22(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36559971

RESUMO

Thanks to the advantages of low disturbance, good concealment and high mobility, bionic fishes have been developed by many countries as equipment for underwater observation and data collection. However, differentiating between true and bionic fishes has become a challenging task. Commonly used acoustic and optical technologies have difficulty in differentiating bionic fishes from real ones due to their high similarity in shape, size, and camouflage ability. To solve this problem, this paper proposes a novel idea for bionic fish recognition based on blue-green light reflection, which is a powerful observation technique for underwater object detection. Blue-green light has good penetration under water and thus can be used as a signal carrier to recognize bionic fishes of different surface materials. Three types of surface materials representing bionic fishes, namely titanium alloy, carbon fiber, and nylon, are investigated in this paper. We collected 1620 groups of blue-green light reflection data of these three kinds of materials and for two real fishes. Following this, three machine learning algorithms were utilized for recognition among them. The recognition accuracy can reach up to about 92.22%, which demonstrates the satisfactory performance of our method. To the best of our knowledge, this is the first work to investigate bionic fish recognition from the perspective of surface material difference using blue-green light reflection.


Assuntos
Biônica , Peixes , Animais , Visão Ocular
19.
Nano Lett ; 21(15): 6406-6415, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34014681

RESUMO

Self-assembled peptide materials with sequence-encoded properties have attracted great interest. Despite their intrinsic chirality, the generation of circularly polarized luminescence (CPL) based on the self-assembly of simple peptides has been rarely reported. Here, we report the self-assembly of peptides into hierarchical helical arrays (HHAs) with controlled supramolecular handedness. The HHAs can emit full-color CPL signals after the incorporation of various achiral fluorescent molecules, and the glum value is 40 times higher than that of the CPL signal from the solutions. By simply changing the amino acid sequence of the peptides, CPL signals with opposite handedness can be generated within the HHAs. The peptide HHAs can provide hydrophobic pockets to accommodate the fluorescent molecules with helical arrangement through strong aromatic stacking interactions, which are responsible for the CPL signals. This work provides a pathway to construct highly ordered chiral materials, which have broad applications in the chiroptical field.


Assuntos
Luminescência , Peptídeos
20.
Biochem Biophys Res Commun ; 547: 192-197, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33618226

RESUMO

In this study, we aimed to develop B. subtilis spore coat protein A (CotA) for the enzymatic determination of bilirubin. Firstly, molecular docking and oxidation kinetic analysis confirmed the feasibility of CotA for oxidizing bilirubin. Secondly, CotA showed pH-preferable oxidization performance to direct bilirubin (DB) in acidic conditions and an alkaline-catalytic oxidation capacity to total bilirubin (TB). Mechanism analysis results confirm that the conformational changes of CotA, DB and UB caused by pH changes are responsible for the selective oxidation of DB and TB by CotA. Then, CotA exhibits better structural characteristics and enzymatic performance than M. verrucaria-derived bilirubin oxidase (Mv-BOD). Besides, the strong anti-interference ability helps CotA adapt to complex catalytic environment in the detection of DB and TB. Our results prove that CotA can be used as a promising candidate bio-enzymatic detection reagent for DB and TB.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Bilirrubina/análise , Ensaios Enzimáticos/métodos , Lacase/metabolismo , Proteínas de Bactérias/química , Bilirrubina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lacase/química , Simulação de Acoplamento Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa