Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Immunol ; 208(4): 910-928, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35082160

RESUMO

Enhancers activate transcription through long-distance interactions with their cognate promoters within a particular subtopologically associated domain (sub-TAD). The TCRα enhancer (Eα) is located at the sub-TAD boundary between the TCRα and DAD1 genes and regulates transcription toward both sides in an ∼1-Mb region. Analysis of Eα activity in transcribing the unrearranged TCRα gene at the 5'-sub-TAD has defined Eα as inactive in CD4-CD8- thymocytes, active in CD4+CD8+ thymocytes, and strongly downregulated in CD4+ and CD8+ thymocytes and αß T lymphocytes. Despite its strongly reduced activity, Eα is still required for high TCRα transcription and expression of TCRαß in mouse and human T lymphocytes, requiring collaboration with distant sequences for such functions. Because VαJα rearrangements in T lymphocytes do not induce novel long-range interactions between Eα and other genomic regions that remain in cis after recombination, strong Eα connectivity with the 3'-sub-TAD might prevent reduced transcription of the rearranged TCRα gene. Our analyses of transcriptional enhancer dependence during T cell development and non-T lineage tissues at the 3'-sub-TAD revealed that Eα can activate the transcription of specific genes, even when it is inactive to transcribe the TCRα gene at the 5'-sub-TAD. Hence distinct requirements for Eα function are necessary at specific genes at both sub-TADs, implying that enhancers do not merely function as chromatin loop anchors that nucleate the formation of factor condensates to increase gene transcription initiated at their cognate promoters. The observed different regulated Eα activity for activating specific genes at its flanking sub-TADs may be a general feature for enhancers located at sub-TAD boundaries.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Animais , Diferenciação Celular/genética , Mapeamento Cromossômico , Rearranjo Gênico da Cadeia alfa dos Receptores de Antígenos dos Linfócitos T , Loci Gênicos , Humanos , Células Jurkat , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Timócitos/imunologia , Timócitos/metabolismo
2.
J Cell Sci ; 133(7)2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32094262

RESUMO

In eukaryotes, a large amount of histones need to be synthesized during the S phase of the cell cycle to package newly synthesized DNA into chromatin. The transcription and 3' end processing of histone pre-mRNAs are controlled by the histone locus body (HLB), which is assembled on the shared promoter for H3 and H4 Here, we identified the Drosophila Prp40 pre-mRNA processing factor (dPrp40, annotated as CG3542) as a novel HLB component. We showed that dPrp40 is essential for Drosophila development, with functionally conserved activity in vertebrates and invertebrates. We observed that dPrp40 is fundamental in endocycling cells, highlighting a role for this factor in mediating replication efficiency in vivo The depletion of dPrp40 from fly cells inhibited the transcription, but not the 3' end processing, of histone mRNA in a H3- and H4-promoter-dependent manner. Our results establish that dPrp40 is an essential protein for Drosophila development that can localize to the HLB and might participate in histone mRNA biosynthesis.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histonas/genética , Histonas/metabolismo , Processamento Pós-Transcricional do RNA , Transcrição Gênica
3.
J Cell Sci ; 132(22)2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31636114

RESUMO

Cajal bodies are nuclear organelles involved in the nuclear phase of small nuclear ribonucleoprotein (snRNP) biogenesis. In this study, we identified the splicing factor TCERG1 as a coilin-associated factor that is essential for Cajal body integrity. Knockdown of TCERG1 disrupts the localization of the components of Cajal bodies, including coilin and NOLC1, with coilin being dispersed in the nucleoplasm into numerous small foci, without affecting speckles, gems or the histone locus body. Furthermore, the depletion of TCERG1 affects the recruitment of Sm proteins to uridine-rich small nuclear RNAs (snRNAs) to form the mature core snRNP. Taken together, the results of this study suggest that TCERG1 plays an important role in Cajal body formation and snRNP biogenesis.


Assuntos
Corpos Enovelados/fisiologia , Fatores de Processamento de RNA/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Fatores de Elongação da Transcrição/genética , Humanos , Splicing de RNA , Ribonucleoproteínas Nucleares Pequenas/genética , Fatores de Elongação da Transcrição/metabolismo
4.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187197

RESUMO

The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αß and γδ T lymphocytes. The TCRα, TCRß, TCRγ, and TCRδ genes exist in two different configurations, unrearranged and rearranged. A correctly rearranged configuration is required for expression of a functional TCR chain. TCRs can take the form of one of three possible heterodimers, pre-TCR, TCRαß, or TCRγδ which drive thymocyte maturation into αß or γδ T lymphocytes. To pass from an unrearranged to a rearranged configuration, global and local three dimensional (3D) chromatin changes must occur during thymocyte development to regulate gene segment accessibility for V(D)J recombination. During this process, enhancers play a critical role by modifying the chromatin conformation and triggering noncoding germline transcription that promotes the recruitment of the recombination machinery. The different signaling that thymocytes receive during their development controls enhancer activity. Here, we summarize the dynamics of long-distance interactions established through chromatin regulatory elements that drive transcription and V(D)J recombination and how different signaling pathways are orchestrated to regulate the activity of enhancers to precisely control TCR gene expression during T-cell maturation.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Genes Codificadores dos Receptores de Linfócitos T/genética , Linfócitos T/imunologia , Animais , Cromatina/genética , Cromatina/imunologia , Elementos Facilitadores Genéticos/imunologia , Regulação da Expressão Gênica/imunologia , Genes Codificadores dos Receptores de Linfócitos T/imunologia , Humanos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transcrição Gênica/genética , Transcrição Gênica/imunologia , Recombinação V(D)J/genética , Recombinação V(D)J/imunologia
5.
RNA ; 22(4): 571-82, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26873599

RESUMO

Coupling between transcription and RNA processing is key for gene regulation. Using live-cell photobleaching techniques, we investigated the factor TCERG1, which coordinates transcriptional elongation with splicing. We demonstrate that TCERG1 is highly mobile in the nucleoplasm and that this mobility is slightly decreased when it is associated with speckles. Dichloro-1-ß-D-ribofuranosylbenzimidazole (DRB) but not α-amanitin treatment reduced the mobility of TCERG1, which suggests interaction with paused transcription elongation complexes. We found that TCERG1 mobility is rapid at the transcription site (TS) of a reporter that splices post-transcriptionally and that TCERG1 is recruited to the active TS independent of the CTD of RNAPII, thus excluding phosphorylated CTD as a requirement for recruiting this factor to the TS. Importantly, the mobility of TCERG1 is reduced when the reporter splices cotranscriptionally, which suggests that TCERG1 forms new macromolecular complexes when splicing occurs cotranscriptionally. In this condition, spliceostatin A has no effect, indicating that TCERG1 rapidly binds and dissociates from stalled spliceosomal complexes and that the mobility properties of TCERG1 do not depend on events occurring after the initial spliceosome formation. Taken together, these data suggest that TCERG1 binds independently to elongation and splicing complexes, thus performing their coupling by transient interactions rather than by stable association with one or the other complexes. This finding has conceptual implications for understanding the coupling between transcription and RNA processing.


Assuntos
Splicing de RNA , Elongação da Transcrição Genética , Fatores de Elongação da Transcrição/fisiologia , Núcleo Celular/metabolismo , Genes Reporter , Células HEK293 , HIV-1/genética , Humanos , Transporte Proteico
6.
RNA ; 21(3): 438-57, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25605964

RESUMO

The first stable complex formed during the assembly of spliceosomes onto pre-mRNA substrates in mammals includes U1 snRNP, which recognizes the 5' splice site, and the splicing factors SF1 and U2AF, which bind the branch point sequence, polypyrimidine tract, and 3' splice site. The 5' and 3' splice site complexes are thought to be joined together by protein-protein interactions mediated by factors that ensure the fidelity of the initial splice site recognition. In this study, we identified and characterized PRPF40B, a putative mammalian ortholog of the U1 snRNP-associated yeast splicing factor Prp40. PRPF40B is highly enriched in speckles with a behavior similar to splicing factors. We demonstrated that PRPF40B interacts directly with SF1 and associates with U2AF(65). Accordingly, PRPF40B colocalizes with these splicing factors in the cell nucleus. Splicing assays with reporter minigenes revealed that PRPF40B modulates alternative splice site selection. In the case of Fas regulation of alternative splicing, weak 5' and 3' splice sites and exonic sequences are required for PRPF40B function. Placing our data in a functional context, we also show that PRPF40B depletion increased Fas/CD95 receptor number and cell apoptosis, which suggests the ability of PRPF40B to alter the alternative splicing of key apoptotic genes to regulate cell survival.


Assuntos
Processamento Alternativo/genética , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Ribonucleoproteínas/genética , Fatores de Transcrição/genética , Apoptose/genética , Sobrevivência Celular/genética , Éxons/genética , Células HeLa , Humanos , Ligação Proteica , Sítios de Splice de RNA/genética , Fatores de Processamento de RNA , Spliceossomos/metabolismo , Fator de Processamento U2AF
7.
J Biol Chem ; 287(21): 17789-17800, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22453921

RESUMO

Transcription elongation regulator 1 (TCERG1) is a human factor implicated in interactions with the spliceosome as a coupler of transcription and splicing. The protein is highly concentrated at the interface between speckles (the compartments enriched in splicing factors) and nearby transcription sites. Here, we identified the FF4 and FF5 domains of TCERG1 as the amino acid sequences required to direct this protein to the periphery of nuclear speckles, where coordinated transcription/RNA processing events occur. Consistent with our localization data, we observed that the FF4 and FF5 pair is required to fold in solution, thus suggesting that the pair forms a functional unit. When added to heterologous proteins, the FF4-FF5 pair is capable of targeting the resulting fusion protein to speckles. This represents, to our knowledge, the first description of a targeting signal for the localization of proteins to sites peripheral to speckled domains. Moreover, this "speckle periphery-targeting signal" contributes to the regulation of alternative splicing decisions of a reporter pre-mRNA in vivo.


Assuntos
Processamento Alternativo/fisiologia , Dobramento de Proteína , Precursores de RNA/metabolismo , Spliceossomos/metabolismo , Transcrição Gênica/fisiologia , Fatores de Elongação da Transcrição/metabolismo , Células HEK293 , Células HeLa , Humanos , Estrutura Terciária de Proteína , Precursores de RNA/genética , Spliceossomos/genética , Fatores de Elongação da Transcrição/genética
8.
Retrovirology ; 10: 124, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24165037

RESUMO

BACKGROUND: Control of RNA polymerase II (RNAPII) release from pausing has been proposed as a checkpoint mechanism to ensure optimal RNAPII activity, especially in large, highly regulated genes. HIV-1 gene expression is highly regulated at the level of elongation, which includes transcriptional pausing that is mediated by both viral and cellular factors. Here, we present evidence for a specific role of the elongation-related factor TCERG1 in regulating the extent of HIV-1 elongation and viral replication in vivo. RESULTS: We show that TCERG1 depletion diminishes the basal and viral Tat-activated transcription from the HIV-1 LTR. In support of a role for an elongation mechanism in the transcriptional control of HIV-1, we found that TCERG1 modifies the levels of pre-mRNAs generated at distal regions of HIV-1. Most importantly, TCERG1 directly affects the elongation rate of RNAPII transcription in vivo. Furthermore, our data demonstrate that TCERG1 regulates HIV-1 transcription by increasing the rate of RNAPII elongation through the phosphorylation of serine 2 within the carboxyl-terminal domain (CTD) of RNAPII and suggest a mechanism for the involvement of TCERG1 in relieving pausing. Finally, we show that TCERG1 is required for HIV-1 replication. CONCLUSIONS: Our study reveals that TCERG1 regulates HIV-1 transcriptional elongation by increasing the elongation rate of RNAPII and phosphorylation of Ser 2 within the CTD. Based on our data, we propose a general mechanism for TCERG1 acting on genes that are regulated at the level of elongation by increasing the rate of RNAPII transcription through the phosphorylation of Ser2. In the case of HIV-1, our evidence provides the basis for further investigation of TCERG1 as a potential therapeutic target for the inhibition of HIV-1 replication.


Assuntos
HIV-1/fisiologia , RNA Polimerase II/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Replicação Viral , Linhagem Celular , Humanos
9.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38004448

RESUMO

Cationic solid-lipid nanoparticles (cSLNs) have become a promising tool for gene and RNA therapies. PEGylation (PEG) is crucial in enhancing particle stability and protection. We evaluated the impact of PEG on the physicochemical and biological characteristics of cholesteryl-oleate cSLNs (CO-cSLNs). Several parameters were analyzed, including the particle size, polydispersity index, zeta potential, shape, stability, cytotoxicity, and loading efficiency. Five different formulations with specific PEGs were developed and compared in both suspended and freeze-dried states. Small, homogeneous, and cationic suspended nanoparticles were obtained, with the Gelucire 50/13 (PEG-32 hydrogenated palm glycerides; Gelucire) and DSPE-mPEG2000 (1,2-distearoyl-phosphatidylethanolamine-methyl-polyethyleneglycol conjungate-2000; DSPE) formulations exhibiting the smallest particle size (~170 nm). Monodisperse populations of freeze-dried nanoparticles were also achieved, with particle sizes ranging from 200 to 300 nm and Z potential values of 30-35 mV. Notably, Gelucire again produced the smallest particle size (211.1 ± 22.4), while the DSPE and Myrj S100 (polyoxyethylene (100) stearate; PEG-100 Stearate) formulations had similar particle sizes to CO-cSLNs (~235 nm). The obtained PEGylated nanoparticles showed suitable properties: they were nontoxic, had acceptable morphology, were capable of forming SLNplexes, and were stable in both suspended and lyophilized states. These PEG-cSLNs are a potential resource for in vivo assays and have the advantage of employing cost-effective PEGs. Optimizing the lyophilization process and standardizing parameters are also recommended to maintain nanoparticle integrity.

10.
Front Immunol ; 13: 943510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059467

RESUMO

γδ T cells play important roles in immune responses by rapidly producing large quantities of cytokines. Recently, γδ T cells have been found to be involved in tissue homeostatic regulation, playing roles in thermogenesis, bone regeneration and synaptic plasticity. Nonetheless, the mechanisms involved in γδ T-cell development, especially the regulation of TCRδ gene transcription, have not yet been clarified. Previous studies have established that NOTCH1 signaling plays an important role in the Tcrg and Tcrd germline transcriptional regulation induced by enhancer activation, which is mediated through the recruitment of RUNX1 and MYB. In addition, interleukin-7 signaling has been shown to be required for Tcrg germline transcription, VγJγ rearrangement and γδ T-lymphocyte generation as well as for promoting T-cell survival. In this study, we discovered that interleukin-7 is required for the activation of enhancer-dependent Tcrd germline transcription during thymocyte development. These results indicate that the activation of both Tcrg and Tcrd enhancers during γδ T-cell development in the thymus depends on the same NOTCH1- and interleukin-7-mediated signaling pathways. Understanding the regulation of the Tcrd enhancer during thymocyte development might lead to a better understanding of the enhancer-dependent mechanisms involved in the genomic instability and chromosomal translocations that cause leukemia.


Assuntos
Receptores de Interleucina-7 , Fator de Transcrição STAT5 , Elementos Facilitadores Genéticos , Células Germinativas/metabolismo , Interleucina-7/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Interleucina-7/genética , Fator de Transcrição STAT5/metabolismo
11.
J Biol Chem ; 285(20): 15220-15233, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20215116

RESUMO

Modification of proteins by small ubiquitin-like modifier (SUMO) is emerging as an important control of transcription and RNA processing. The human factor TCERG1 (also known as CA150) participates in transcriptional elongation and alternative splicing of pre-mRNAs. Here, we report that SUMO family proteins modify TCERG1. Furthermore, TCERG1 binds to the E2 SUMO-conjugating enzyme Ubc9. Two lysines (Lys-503 and Lys-608) of TCERG1 are the major sumoylation sites. Sumoylation does not affect localization of TCERG1 to the splicing factor-rich nuclear speckles or the alternative splicing function of TCERG1. However, mutation of the SUMO acceptor lysine residues enhanced TCERG1 transcriptional activity, indicating that SUMO modification negatively regulates TCERG1 transcriptional activity. These results reveal a regulatory role for sumoylation in controlling the activity of a transcription factor that modulates RNA polymerase II elongation and mRNA alternative processing, which are discriminated differently by this post-translational modification.


Assuntos
Processamento Alternativo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Transativadores/fisiologia , Transcrição Gênica , Sequência de Bases , Linhagem Celular , Imunofluorescência , Humanos , Mutação , Interferência de RNA , RNA Interferente Pequeno , Transativadores/genética , Transativadores/metabolismo , Fatores de Elongação da Transcrição
12.
J Biol Chem ; 285(51): 40342-50, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20956529

RESUMO

DACH1 (Dachshund homolog 1) is a key component of the retinal determination gene network and regulates gene expression either indirectly as a co-integrator or through direct DNA binding. The current studies were conducted to understand, at a higher level of resolution, the mechanisms governing DACH1-mediated transcriptional repression via DNA sequence-specific binding. DACH1 repressed gene transcription driven by the DACH1-responsive element (DRE). Recent genome-wide ChIP-Seq analysis demonstrated DACH1 binding sites co-localized with Forkhead protein (FOX) binding sites. Herein, DACH1 repressed, whereas FOX proteins enhanced, both DRE and FOXA-responsive element-driven gene expression. Reduced DACH1 expression using a shRNA approach enhanced FOX protein activity. As DACH1 antagonized FOX target gene expression and attenuated FOX signaling, we sought to identify limiting co-integrator proteins governing DACH1 signaling. Proteomic analysis identified transcription elongation regulator 1 (TCERG1) as the transcriptional co-regulator of DACH1 activity. The FF2 domain of TCERG1 was required for DACH1 binding, and the deletion of FF2 abolished DACH1 trans-repression function. The carboxyl terminus of DACH1 was necessary and sufficient for TCERG1 binding. Thus, DACH1 represses gene transcription through direct DNA binding to the promoter region of target genes by recruiting the transcriptional co-regulator, TCERG1.


Assuntos
DNA/metabolismo , Proteínas do Olho/metabolismo , Proteínas Repressoras/metabolismo , Elementos de Resposta/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo , DNA/genética , Proteínas do Olho/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Células HeLa , Humanos , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/genética
13.
Front Genet ; 11: 731, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760425

RESUMO

Alternative splicing of pre-mRNA contributes strongly to the diversity of cell- and tissue-specific protein expression patterns. Global transcriptome analyses have suggested that >90% of human multiexon genes are alternatively spliced. Alterations in the splicing process cause missplicing events that lead to genetic diseases and pathologies, including various neurological disorders, cancers, and muscular dystrophies. In recent decades, research has helped to elucidate the mechanisms regulating alternative splicing and, in some cases, to reveal how dysregulation of these mechanisms leads to disease. The resulting knowledge has enabled the design of novel therapeutic strategies for correction of splicing-derived pathologies. In this review, we focus primarily on therapeutic approaches targeting splicing, and we highlight nanotechnology-based gene delivery applications that address the challenges and barriers facing nucleic acid-based therapeutics.

14.
Mol Cell Biol ; 26(13): 4998-5014, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16782886

RESUMO

The human transcription elongation factor CA150 contains three N-terminal WW domains and six consecutive FF domains. WW and FF domains, versatile modules that mediate protein-protein interactions, are found in nuclear proteins involved in transcription and splicing. CA150 interacts with the splicing factor SF1 and with the phosphorylated C-terminal repeat domain (CTD) of RNA polymerase II (RNAPII) through its WW and FF domains, respectively. WW and FF domains may, therefore, serve to link transcription and splicing components and play a role in coupling transcription and splicing in vivo. In the study presented here, we investigated the subcellular localization and association of CA150 with factors involved in pre-mRNA transcriptional elongation and splicing. Endogenous CA150 colocalized with nuclear speckles, and this was not affected either by inhibition of cellular transcription or by RNAPII CTD phosphorylation. FF domains are essential for the colocalization to speckles, while WW domains are not required for colocalization. We also performed biochemical assays to understand the role of WW and FF domains in mediating the assembly of transcription and splicing components into higher-order complexes. Transcription and splicing components bound to a region in the amino-terminal part of CA150 that contains the three WW domains; however, we identified a region of the C-terminal FF domains that was also critical. Our results suggest that sequences located at both the amino and carboxyl regions of CA150 are required to assemble transcription/splicing complexes, which may be involved in the coupling of those processes.


Assuntos
Estruturas do Núcleo Celular/química , Proteínas de Ligação a DNA/metabolismo , Splicing de RNA , Transativadores/análise , Transativadores/química , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Estruturas do Núcleo Celular/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/análise , Humanos , Dados de Sequência Molecular , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína/genética , RNA Polimerase II/metabolismo , Fatores de Processamento de RNA , Deleção de Sequência , Transativadores/metabolismo , Fatores de Transcrição/análise , Fatores de Elongação da Transcrição
15.
Colloids Surf B Biointerfaces ; 184: 110533, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593829

RESUMO

Nanoparticle-mediated plasmid delivery is considered a useful tool to introduce foreign DNA into the cells for the purpose of DNA vaccination and/or gene therapy. Cationic solid-lipid nanoparticles (cSLNs) are considered one of the most promising non-viral vectors for nucleic acid delivery. Based on the idea that the optimization of the components is required to improve transfection efficiency, the present study aimed to formulate and characterize cholesteryl oleate-containing solid-lipid nanoparticles (CO-SLNs) incorporating protamine (P) to condense DNA to produce P:DNA:CO-SLN complexes as non-viral vectors for gene delivery with reduced cytotoxicity and high cellular uptake efficiency. For this purpose, CO-SLNs were used to prepare DNA complexes with and without protamine as DNA condenser and nuclear transfer enhancer. The main physicochemical characteristics, binding capabilities, cytotoxicity and cellular uptake of these novel CO-SLNs were analyzed. Positively charged spherical P:DNA:CO-SLN complexes with a particle size ranging from 330.1 ± 14.8 nm to 347.0 ± 18.5 nm were obtained. Positive results were obtained in the DNase I protection assay with a protective effect of the genetic material and 100% loading efficiency was achieved at a P:DNA:CO-SLN ratio of 2:1:7. Transfection studies in human embryonic kidney (HEK293T) cells showed the versatility of adding protamine to efficiently transfect cells, widening the potential applications of CO-SLN-based vectors, since the incorporation of protamine induced almost a 200-fold increase in the transfection capacity of CO-SLNs without toxicity. These results indicate that CO-SLNs with protamine are a safe and effective platform for non-viral nucleic acid delivery.


Assuntos
Ésteres do Colesterol/química , Técnicas de Transferência de Genes , Lipídeos/química , Nanopartículas/química , Cátions/química , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Células HEK293 , Humanos , Tamanho da Partícula , Propriedades de Superfície
16.
Colloids Surf B Biointerfaces ; 180: 159-167, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31048241

RESUMO

The development of new nanoparticle formulations that are capable of high transfection efficiency without toxicity is essential to provide new tools for gene therapy. However, the issues of complex, poorly reproducible manufacturing methods, and low efficiencies during in vivo testing have prevented translation to the clinic. We have previously reported the use of cholesteryl oleate as a novel excipient for solid lipid nanoparticles (SLNs) for the development of highly efficient and nontoxic nucleic acid delivery carriers. Here, we performed an extensive characterization of this novel formulation to make the scale up under Good Manufacturing Practice (GMP) possible. We also describe the complete physicochemical and biological characterization of cholesteryl oleate-loaded SLNs to ensure the reproducibility of this formula and the preservation of its characteristics before and after the lyophilization process. We defined the best manufacturing method and studied the influence of some parameters on the obtained nanoparticles using the Quality by Design (ICH Q8) guideline to obtain cholesteryl oleate-loaded SLNs that remain stable during storage and guarantee in vitro nucleic acid delivery efficacy. Our results indicate that this improved formulation is suitable for gene therapy with the possibility of scale-up the manufacturing of nanoparticles under GMP conditions.


Assuntos
Ésteres do Colesterol/química , Técnicas de Transferência de Genes , Nanopartículas/química , Plasmídeos/química , Transfecção/métodos , Aminas/química , Carbocianinas/química , Carbocianinas/metabolismo , Cátions , Análise Fatorial , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos , Microscopia de Fluorescência , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Tamanho da Partícula , Plasmídeos/metabolismo , Poloxâmero/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ácidos Esteáricos/química
17.
Int J Nanomedicine ; 13: 3223-3233, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881274

RESUMO

BACKGROUND: Cationic solid lipid nanoparticles (SLNs) have been given considerable attention for therapeutic nucleic acid delivery owing to their advantages over viral and other nanoparticle delivery systems. However, poor delivery efficiency and complex formulations hinder the clinical translation of SLNs. AIM: The aim of this study was to formulate and characterize SLNs incorporating the cholesterol derivative cholesteryl oleate to produce SLN-nucleic acid complexes with reduced cytotoxicity and more efficient cellular uptake. METHODS: Five cholesteryl oleate-containing formulations were prepared. Laser diffraction and laser Doppler microelectrophoresis were used to evaluate particle size and zeta potential, respectively. Nanoparticle morphology was analyzed using electron microscopy. Cytotoxicity and cellular uptake of lipoplexes were evaluated using flow cytometry and fluorescence microscopy. The gene inhibition capacity of the lipoplexes was assessed using siRNAs to block constitutive luciferase expression. RESULTS: We obtained nanoparticles with a mean diameter of approximately 150-200 nm in size and zeta potential values of 25-40 mV. SLN formulations with intermediate concentrations of cholesteryl oleate exhibited good stability and spherical structures with no aggregation. No cell toxicity of any reference SLN was observed. Finally, cellular uptake experiments with DNA-and RNA-SLNs were performed to select one reference with superior transient transfection efficiency that significantly decreased gene activity upon siRNA complexation. CONCLUSION: The results indicate that cholesteryl oleate-loaded SLNs are a safe and effective platform for nonviral nucleic acid delivery.


Assuntos
Ésteres do Colesterol/química , Inativação Gênica , Terapia Genética/métodos , Nanopartículas/administração & dosagem , Nanopartículas/química , Cátions/química , Portadores de Fármacos/química , Eletroforese/métodos , Células HEK293 , Humanos , Lasers , Lipídeos/química , Microscopia de Fluorescência , Nanopartículas/toxicidade , Tamanho da Partícula , RNA Interferente Pequeno/administração & dosagem , Transfecção/métodos
18.
Mol Neurobiol ; 54(10): 7808-7823, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27844289

RESUMO

TCERG1 is a highly conserved human protein implicated in interactions with the transcriptional and splicing machinery that is associated with neurodegenerative disorders. Biochemical, neuropathological, and genetic evidence suggests an important role for TCERG1 in Huntington's disease (HD) pathogenesis. At present, the molecular mechanism underlying TCERG1-mediated neuronal effects is unknown. Here, we show that TCERG1 depletion led to widespread alterations in mRNA processing that affected different types of alternative transcriptional or splicing events, indicating that TCERG1 plays a broad role in the regulation of alternative splicing. We observed considerable changes in the transcription and alternative splicing patterns of genes involved in cytoskeleton dynamics and neurite outgrowth. Accordingly, TCERG1 depletion in the neuroblastoma SH-SY5Y cell line and primary mouse neurons affected morphogenesis and resulted in reduced dendritic outgrowth, with a major effect on dendrite ramification and branching complexity. These defects could be rescued by ectopic expression of TCERG1. Our results indicate that TCERG1 affects expression of multiple mRNAs involved in neuron projection development, whose misregulation may be involved in TCERG1-linked neurological disorders.


Assuntos
Citoesqueleto/metabolismo , Neuroblastoma/metabolismo , Crescimento Neuronal/fisiologia , Neurônios/metabolismo , Fatores de Elongação da Transcrição/biossíntese , Processamento Alternativo/fisiologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Citoesqueleto/genética , Citoesqueleto/patologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Neuroblastoma/genética , Neuroblastoma/patologia , Neurônios/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Fatores de Elongação da Transcrição/deficiência , Fatores de Elongação da Transcrição/genética
19.
Int J Biochem Cell Biol ; 91(Pt B): 194-202, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28600144

RESUMO

Studies of the spatial organization of the highly compartmentalized eukaryotic nucleus and dynamics of transcription and RNA processing within it are fundamental for fully understanding how gene expression is regulated in the cell. Although some progress has been made in deciphering the functional consequences of this complex network of interacting molecules in the context of nuclear organization, how proteins and RNA move in the nucleus and how the transcription and RNA processing machineries find their targets are important questions that remain largely unexplored. Here, we review major hallmarks and novel insights regarding the movement of RNA and proteins in the context of nuclear organization as well as the mechanisms by which the proteins involved in RNA processing localize to specific nuclear compartments.


Assuntos
Núcleo Celular/metabolismo , Proteínas/metabolismo , Processamento Pós-Transcricional do RNA , RNA/genética , RNA/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Humanos
20.
Genes (Basel) ; 8(3)2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28245575

RESUMO

The tightly regulated process of precursor messenger RNA (pre-mRNA) alternative splicing (AS) is a key mechanism in the regulation of gene expression. Defects in this regulatory process affect cellular functions and are the cause of many human diseases. Recent advances in our understanding of splicing regulation have led to the development of new tools for manipulating splicing for therapeutic purposes. Several tools, including antisense oligonucleotides and trans-splicing, have been developed to target and alter splicing to correct misregulated gene expression or to modulate transcript isoform levels. At present, deregulated AS is recognized as an important area for therapeutic intervention. Here, we summarize the major hallmarks of the splicing process, the clinical implications that arise from alterations in this process, and the current tools that can be used to deliver, target, and correct deficiencies of this key pre-mRNA processing event.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa