Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neurosci ; 37(3): 626-636, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28100744

RESUMO

The rostral ventromedial medulla (RVM) is a relay in the descending pain modulatory system and an important site of endocannabinoid modulation of pain. Endocannabinoids inhibit GABA release in the RVM, but it is not known whether this effect persists in chronic pain states. In the present studies, persistent inflammation induced by complete Freund's adjuvant (CFA) increased GABAergic miniature IPSCs (mIPSCs). Endocannabinoid activation of cannabinoid (CB1) receptors known to inhibit presynaptic GABA release was significantly reduced in the RVM of CFA-treated rats compared with naive rats. The reduction in CFA-treated rats correlated with decreased CB1 receptor protein expression and function in the RVM. Paradoxically, the nonselective CB1/CB2 receptor agonist WIN55212 inhibited GABAergic mIPSCs in both naive and CFA-treated rats. However, WIN55212 inhibition was reversed by the CB1 receptor antagonist rimonabant in naive rats but not in CFA-treated rats. WIN55212-mediated inhibition in CFA-treated rats was blocked by the CB2 receptor-selective antagonist SR144528, indicating that CB2 receptor function in the RVM is increased during persistent inflammation. Consistent with these results, CB2 receptor agonists AM1241 and GW405833 inhibited GABAergic mIPSC frequency only in CFA-treated rats, and the inhibition was reversed with SR144528. When administered alone, SR144528 and another CB2 receptor-selective antagonist AM630 increased mIPSC frequency in the RVM of CFA-treated rats, indicating that CB2 receptors are tonically activated by endocannabinoids. Our data provide evidence that CB2 receptor function emerges in the RVM in persistent inflammation and that selective CB2 receptor agonists may be useful for treatment of persistent inflammatory pain. SIGNIFICANCE STATEMENT: These studies demonstrate that endocannabinoid signaling to CB1 and CB2 receptors in adult rostral ventromedial medulla is altered in persistent inflammation. The emergence of CB2 receptor function in the rostral ventromedial medulla provides additional rationale for the development of CB2 receptor-selective agonists as useful therapeutics for chronic inflammatory pain.


Assuntos
Bulbo/metabolismo , Dor/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Benzoxazinas/farmacologia , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Masculino , Bulbo/efeitos dos fármacos , Morfolinas/farmacologia , Naftalenos/farmacologia , Técnicas de Cultura de Órgãos , Dor/tratamento farmacológico , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Receptor CB2 de Canabinoide/antagonistas & inibidores
2.
J Neurosci ; 36(5): 1669-81, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26843648

RESUMO

The ventrolateral periaqueductal gray (vlPAG) is a key structure in the descending pain modulatory circuit. Activation of the circuit occurs via disinhibition of GABAergic inputs onto vlPAG output neurons. In these studies, we tested the hypothesis that GABAergic inhibition is increased during persistent inflammation, dampening activation of the descending circuit from the vlPAG. Our results indicate that persistent inflammation induced by Complete Freund's adjuvant (CFA) modulates GABA signaling differently in male and female rats. CFA treatment results in increased presynaptic GABA release but decreased high-affinity tonic GABAA currents in female vlPAG neurons. These effects are not observed in males. The tonic currents in the vlPAG are dependent on GABA transporter activity and are modulated by agonists that activate GABAA receptors containing the δ subunit. The GABAA δ agonist THIP (gaboxadol) induced similar amplitude currents in naive and CFA-treated rats. In addition, a positive allosteric modulator of the GABAA δ subunit, DS2 (4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl]benzamide), increased tonic currents. These results indicate that GABAA δ receptors remain on the cell surface but are less active in CFA-treated female rats. In vivo behavior studies showed that morphine induced greater antinociception in CFA-treated females that was reversed with microinjections of DS2 directly into the vlPAG. DS2 did not affect morphine antinociception in naive or CFA-treated male rats. Together, these data indicate that sex-specific adaptations in GABAA receptor signaling modulate opioid analgesia in persistent inflammation. Antagonists of GABAA δ receptors may be a viable strategy for reducing pain associated with persistent inflammation, particularly in females. SIGNIFICANCE STATEMENT: These studies demonstrate that GABA signaling is modulated in the ventrolateral periaqueductal gray by persistent inflammation differently in female and male rats. Our results indicate that antagonists or negative allosteric modulators of GABAA δ receptors may be an effective strategy to alleviate chronic inflammatory pain and promote opioid antinociception, especially in females.


Assuntos
Dor Crônica/fisiopatologia , Substância Cinzenta Periaquedutal/fisiologia , Receptores de GABA-A/fisiologia , Caracteres Sexuais , Transdução de Sinais/fisiologia , Animais , Dor Crônica/etiologia , Relação Dose-Resposta a Droga , Feminino , Agonistas GABAérgicos/farmacologia , Temperatura Alta/efeitos adversos , Inflamação/patologia , Inflamação/fisiopatologia , Masculino , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
3.
J Physiol ; 593(1): 217-30, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25556797

RESUMO

KEY POINTS: Electrical stimulation of the rostral ventromedial medulla (RVM) facilitates pain behaviours in neonates but inhibits these behaviours in adults. The cellular mechanisms underlying these changes in RVM modulation of pain behaviours are not known. We optimized whole-cell patch-clamp recordings for RVM neurons in animals older than postnatal day 30 and compared the results to postnatal day 10-21 animals. Our results demonstrate that the γ-aminobutyric acid (GABA) release is lower and opioid effects are more evident in adult rats compared to early postnatal rats. A cannabinoid receptor antagonist significantly increased GABA release in mature but not in immature RVM neurons suggesting the presence of local endocannabinoid tone in mature RVM. Neurons in the rostral ventromedial medulla (RVM) play critical and complex roles in pain modulation. Recent studies have shown that electrical stimulation of the RVM produces pain facilitation in young animals (postnatal (PN) day < 21) but predominantly inhibits pain behaviours in adults. The cellular mechanisms underlying these changes in RVM modulation of pain behaviours are not known. This is in part because whole-cell patch-clamp studies in RVM to date have been in young (PN day < 18) animals because the organization and abundance of myelinated fibres in this region make the RVM a challenging area for whole-cell patch-clamp recording in adults. Several neurotransmitter systems, including GABAergic neurotransmission, undergo developmental changes that mature by PN day 21. Thus, we focused on optimizing whole-cell patch-clamp recordings for RVM neurons in animals older than PN day 30 and compared the results to animals at PN day 10-21. Our results demonstrate that the probability of GABA release is lower and that opioid and endocannabinoid effects are more evident in adult rats (mature) compared to early postnatal (immature) rats. Differences in these properties of RVM neurons may contribute to the developmental changes in descending control of pain from the RVM to the spinal cord.


Assuntos
Envelhecimento/fisiologia , Bulbo/fisiologia , Ácido gama-Aminobutírico/fisiologia , Potenciais de Ação , Analgésicos Opioides/farmacologia , Animais , Endocanabinoides/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Masculino , Neurônios/fisiologia , Peptídeos Opioides/farmacologia , Compostos Orgânicos/farmacologia , Ratos , Ratos Sprague-Dawley
4.
Nat Med ; 10(6): 638-42, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15146179

RESUMO

Thyroxine (T(4)) is the predominant form of thyroid hormone (TH). Hyperthyroidism, a condition associated with excess TH, is characterized by increases in metabolic rate, core body temperature and cardiac performance. In target tissues, T(4) is enzymatically deiodinated to 3,5,3'-triiodothyronine (T(3)), a high-affinity ligand for the nuclear TH receptors TR alpha and TR beta, whose activation controls normal vertebrate development and physiology. T(3)-modulated transcription of target genes via activation of TR alpha and TR beta is a slow process, the effects of which manifest over hours and days. Although rapidly occurring effects of TH have been documented, the molecules that mediate these non-genomic effects remain obscure. Here we report the discovery of 3-iodothyronamine (T(1)AM), a naturally occurring derivative of TH that in vitro is a potent agonist of the G protein-coupled trace amine receptor TAR1. Administering T(1)AM in vivo induces profound hypothermia and bradycardia within minutes. T(1)AM treatment also rapidly reduces cardiac output in an ex vivo working heart preparation. These results suggest the existence of a new signaling pathway, stimulation of which leads to rapid physiological and behavioral consequences that are opposite those associated with excess TH.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Transdução de Sinais/fisiologia , Tironinas/análogos & derivados , Tironinas/química , Tironinas/metabolismo , Tiroxina/metabolismo , Animais , Temperatura Corporal , Química Encefálica , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Hipotermia , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Ratos , Ratos Wistar , Tiroxina/química , Fatores de Tempo
5.
Stroke ; 38(9): 2569-76, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17690312

RESUMO

BACKGROUND AND PURPOSE: Mild hypothermia confers profound neuroprotection in ischemia. We recently discovered 2 natural derivatives of thyroxine, 3-iodothyronamine (T(1)AM) and thyronamine (T(0)AM), that when administered to rodents lower body temperature for several hours without induction of a compensatory homeostatic response. We tested whether T(1)AM- and T(0)AM-induced hypothermia protects against brain injury from experimental stroke. METHODS: We tested T(1)AM and T(0)AM 1 hour after and 2 days before stroke in a mouse model of focal ischemia. To determine whether T(1)AM and T(0)AM require hypothermia to protect against stroke injury, the induction of hypothermia was prevented. RESULTS: T(1)AM and T(0)AM administration reduced body temperature from 37 degrees C to 31 degrees C. Mice given T(1)AM or T(0)AM after the ischemic period had significantly smaller infarcts compared with controls. Mice preconditioned with T(1)AM before ischemia displayed significantly smaller infarcts compared with controls. Pre- and postischemia treatments required the induction of hypothermia. T(1)AM and T(0)AM treatment in vitro failed to confer neuroprotection against ischemia. CONCLUSIONS: T(1)AM and T(0)AM, are potent neuroprotectants in acute stroke and T(1)AM can be used as antecedent treatment to induce neuroprotection against subsequent ischemia. Hypothermia induced by T(1)AM and T(0)AM may underlie neuroprotection. T(1)AM and T(0)AM offer promise as treatments for brain injury.


Assuntos
Hipotermia/induzido quimicamente , Fármacos Neuroprotetores , Acidente Vascular Cerebral/patologia , Tironinas , Tiroxina/análogos & derivados , Animais , Comportamento Animal/fisiologia , Temperatura Corporal , Isquemia Encefálica/patologia , Células Cultivadas , Humanos , Precondicionamento Isquêmico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Neurônios/citologia , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/prevenção & controle , Tironinas/química , Tironinas/metabolismo , Tironinas/farmacologia
6.
J Med Chem ; 49(3): 1101-12, 2006 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-16451074

RESUMO

We have previously shown that several thyronamines, decarboxylated and deiodinated metabolites of the thyroid hormone, potently activate an orphan G protein-coupled receptor in vitro (TAAR1) and induced hypothermia in vivo on a rapid time scale [Scanlan, T. S.; Suchland, K. L.; Hart, M. E.; Chiellini, G.; Huang, Y.; Kruzich, P. J.; Frascarelli, S.; Crossley, D. A.; Bunzow, J. R.; Ronca-Testoni, S.; Lin, E. T.; Hatton, D.; Zucchi, R.; Grandy, D. K. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat. Med. 2004, 10 (6), 638-642]. Herein, we report the synthesis of these thyronamines. Additionally, a large number of thyroamine derivatives were synthesized in an effort to understand the molecular basis of TAAR1 activation and hypothermia induction. Several derivatives were found to potently activate both rTAAR1 and mTAAR1 in vitro (compounds 77, 85, 91, and 92). When administered to mice at a 50 mg/kg dose, these derivatives all induced significant hypothermia within 60 min and exhibited a hypothermic induction profile analogous to 3-iodothyronamine (1, T(1)AM) except 91, which proved to be more efficacious. On the basis of this result, a dose-dependent profile for 91 was generated and an ED(50) of 30 mumol/kg was calculated. Compound 91 proved to be more potent than T(1)AM for TAAR1 activation and exhibits increased potency and efficacy for hypothermia induction. These data further strengthen the pharmacological correlation linking TAAR1 activation by thyronamines and hypothermia induction in mice.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Tironinas/síntese química , Animais , Temperatura Corporal/efeitos dos fármacos , Linhagem Celular , AMP Cíclico/biossíntese , Humanos , Hipotermia/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Receptores Acoplados a Proteínas G/genética , Relação Estrutura-Atividade , Tironinas/química , Tironinas/farmacologia , Transfecção
7.
J Med Chem ; 57(2): 378-90, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24354319

RESUMO

Amphetamines are widely abused drugs that interfere with dopamine transport and storage. Recently, however, another mechanism of action was identified: stereoselective activation of the GαS protein-coupled trace amine-associated receptor 1 (TAAR1). To identify structural determinants of this stereoselectivity, we functionally evaluated six mutant receptors in vitro and then used homology modeling and dynamic simulation to predict drug affinities. Converting Asp102 to Ala rendered mouse and rat TAAR1 (mTAAR1 and rTAAR1, respectively) insensitive to ß-phenylethylamine, amphetamine (AMPH), and methamphetamine (METH). Mutating Met268 in rTAAR1 to Thr shifted the concentration-response profiles for AMPH and METH isomers rightward an order of magnitude, whereas replacing Thr268 with Met in mTAAR1 resulted in profiles leftward shifted 10-30-fold. Replacing Asn287 with Tyr in rTAAR1 produced a mouselike receptor, while the reciprocal mTAAR1 mutant was rTAAR1-like. These results confirm TAAR1 is an AMPH/METH receptor in vitro and establish residues 102 (3.32) and 268 (6.55) as major contributors to AMPH/METH binding with residue 287 (7.39) determining species stereoselectivity.


Assuntos
Anfetamina/metabolismo , Estimulantes do Sistema Nervoso Central/metabolismo , Metanfetamina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Anfetamina/química , Anfetamina/farmacologia , Animais , Sítios de Ligação , Estimulantes do Sistema Nervoso Central/química , Estimulantes do Sistema Nervoso Central/farmacologia , AMP Cíclico/biossíntese , Células HEK293 , Humanos , Metanfetamina/química , Metanfetamina/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação , Ratos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Homologia de Sequência de Aminoácidos , Estereoisomerismo
8.
Pharmacol Biochem Behav ; 103(4): 831-41, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23262298

RESUMO

An allele of the human dopamine D4 receptor (D4R) gene (DRD4), containing seven tandem repeats of a 48-base nucleotide sequence (DRD4.7), has been reproducibly found in novelty seekers, substance abusers, and individuals with attention-deficit hyperactivity disorder. One hypothesis predicts the resultant protein product of the DRD4.7 polymorphism is deficient in G protein-coupled signaling. If attenuated D4R signaling contributes to these complex behaviors, then wild-type (WT) mice and mice completely lacking D4Rs (D4R KO) might be expected to display significantly different behavioral responses to stimuli known to affect dopamine signaling, such as novelty or psychostimulants. Adolescent male D4R KO mice exhibited greater locomotor activity and spent less time in the anxiogenic center of a novel open field environment than WT littermates. The presence of D4Rs had no effect on emergence into a novel environment from a sheltered space or exploration of a novel object. Low doses of acute methylphenidate (MP) had no effect on the exploration of a novel object, but dose-dependently increased the latency to emerge into a novel environment from a sheltered space. WT and D4R KO mice responded differently to high doses of acute MP, displaying significantly elevated locomotor activity and reduced stereotypy relative to WT mice. Chronic MP treatment produced enhanced locomotor sensitization in D4R KO mice, however this effect could not be fully recapitulated using the putative D4R antagonist L-745-870. These studies suggest that the roles of D4R signaling in novelty-seeking behaviors and the response to psychostimulants are not as clear as previously reported, and that some of these effects may be due to developmental compensatory effects as a consequence of lost D4R expression. If the DRD4.7 variant results in deficient D4R signaling in vivo, this may contribute to an elevated risk of sensitization to drugs of abuse including psychostimulants used to treat ADHD.


Assuntos
Ansiedade/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Comportamento Exploratório/fisiologia , Metilfenidato/farmacologia , Atividade Motora/fisiologia , Receptores de Dopamina D4/deficiência , Animais , Ansiedade/induzido quimicamente , Ansiedade/genética , Estimulantes do Sistema Nervoso Central/toxicidade , Comportamento Exploratório/efeitos dos fármacos , Masculino , Metilfenidato/toxicidade , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética
9.
PLoS One ; 7(4): e35373, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22506078

RESUMO

BACKGROUND: Regulation of chloride gradients is a major mechanism by which excitability is regulated in neurons. Disruption of these gradients is implicated in various diseases, including cystic fibrosis, neuropathic pain and epilepsy. Relatively few studies have addressed chloride regulation in neuronal processes because probes capable of detecting changes in small compartments over a physiological range are limited. METHODOLOGY/PRINCIPAL FINDINGS: In this study, a palmitoylation sequence was added to a variant of the yellow fluorescent protein previously described as a sensitive chloride indicator (YFPQS) to target the protein to the plasma membrane (mbYFPQS) of cultured midbrain neurons. The reporter partitions to the cytoplasmic face of the cellular membranes, including the plasma membrane throughout the neurons and fluorescence is stable over 30-40 min of repeated excitation showing less than 10% decrease in mbYFPQS fluorescence compared to baseline. The mbYFPQS has similar chloride sensitivity (k(50) =  41 mM) but has a shifted pKa compared to the unpalmitoylated YFPQS variant (cytYFPQS) that remains in the cytoplasm when expressed in midbrain neurons. Changes in mbYFPQS fluorescence were induced by the GABA(A) agonist muscimol and were similar in the soma and processes of the midbrain neurons. Amphetamine also increased mbYFPQS fluorescence in a subpopulation of cultured midbrain neurons that was reversed by the selective dopamine transporter (DAT) inhibitor, GBR12909, indicating that mbYFPQS is sensitive enough to detect endogenous DAT activity in midbrain dopamine (DA) neurons. CONCLUSIONS/SIGNIFICANCE: The mbYFPQS biosensor is a sensitive tool to study modulation of intracellular chloride levels in neuronal processes and is particularly advantageous for simultaneous whole-cell patch clamp and live-cell imaging experiments.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Cloretos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas Luminescentes/metabolismo , Animais , Técnicas Biossensoriais/métodos , Células Cultivadas , Citoplasma/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Mesencéfalo/metabolismo , Ratos , Ratos Sprague-Dawley
10.
Synapse ; 53(2): 131-9, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15170825

RESUMO

Mice lacking the dopamine D4 receptor subtype (D4R-/-) are supersensitive to methamphetamine and cocaine. We sought to expand and refine earlier experiments performed on F2 generation D4R-/- mice by lengthening the behavioral session, utilizing an N10 D4R-/- incipient congenic C57BL/6J line (D4R-/- mice backcrossed with wildtype C57BL/6J mice for 10 successive generations), and investigating whether dopamine D4Rs are necessary for the expression of behavioral sensitization to amphetamine. The D4R-/- mice demonstrated an enhanced and dose-dependent increase in amphetamine-stimulated activity compared to wildtype mice following acute administrations of amphetamine. For the behavioral sensitization experiments, separate groups of mice received either repeated administrations of the same dose of amphetamine or a subthreshold dose of amphetamine (2 mg/kg) 28 days following pretreatment with either saline, 1.0, 3.0, or 10.0 mg/kg amphetamine. The D4R-/- mice displayed an enhanced dose-dependent sensitized response to repeated amphetamine administrations compared to their wildtype littermates in both behavioral sensitization paradigms. Our present results further support the importance of dopamine D4Rs in psychostimulant-mediated locomotion and neural plasticity.


Assuntos
Anfetamina/administração & dosagem , Locomoção/efeitos dos fármacos , Receptores de Dopamina D2/deficiência , Receptores de Dopamina D2/genética , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Relação Dose-Resposta a Droga , Hipersensibilidade a Drogas/genética , Hipersensibilidade a Drogas/fisiopatologia , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Dopamina D4
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa