Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Pathol ; 245(3): 324-336, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29672864

RESUMO

Developmental transcription programs are epigenetically regulated by multi-protein complexes, including the menin- and MLL-containing trithorax (TrxG) complexes, which promote gene transcription by depositing the H3K4me3 activating mark at target gene promoters. We recently reported that in Ewing sarcoma, MLL1 (lysine methyltransferase 2A, KMT2A) and menin are overexpressed and function as oncogenes. Small molecule inhibition of the menin-MLL interaction leads to loss of menin and MLL1 protein expression, and to inhibition of growth and tumorigenicity. Here, we have investigated the mechanistic basis of menin-MLL-mediated oncogenic activity in Ewing sarcoma. Bromouridine sequencing (Bru-seq) was performed to identify changes in nascent gene transcription in Ewing sarcoma cells, following exposure to the menin-MLL interaction inhibitor MI-503. Menin-MLL inhibition resulted in early and widespread reprogramming of metabolic processes. In particular, the serine biosynthetic pathway (SSP) was the pathway most significantly affected by MI-503 treatment. Baseline expression of SSP genes and proteins (PHGDH, PSAT1, and PSPH), and metabolic flux through the SSP were confirmed to be high in Ewing sarcoma. In addition, inhibition of PHGDH resulted in reduced cell proliferation, viability, and tumor growth in vivo, revealing a key dependency of Ewing sarcoma on the SSP. Loss of function studies validated a mechanistic link between menin and the SSP. Specifically, inhibition of menin resulted in diminished expression of SSP genes, reduced H3K4me3 enrichment at the PHGDH promoter, and complete abrogation of de novo serine and glycine biosynthesis, as demonstrated by metabolic tracing studies with 13 C-labeled glucose. These data demonstrate that the SSP is highly active in Ewing sarcoma and that its oncogenic activation is maintained, at least in part, by menin-dependent epigenetic mechanisms involving trithorax complexes. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias Ósseas/metabolismo , Metabolismo Energético , Proteínas Proto-Oncogênicas/metabolismo , Sarcoma de Ewing/metabolismo , Serina/biossíntese , Animais , Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Camundongos Nus , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Proto-Oncogênicas/genética , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Transdução de Sinais , Transaminases/genética , Transaminases/metabolismo , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Pharm Res ; 36(1): 3, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30406478

RESUMO

PURPOSE: Drug-induced liver injuries (DILI) comprise a significant proportion of adverse drug reactions leading to hospitalizations and death. One frequent DILI is granulomatous inflammation from exposure to harmful metabolites that activate inflammatory pathways of immune cells of the liver, which may act as a barrier to isolate the irritating stimulus and limit tissue damage. METHODS: Paralleling the accumulation of CFZ precipitates in the liver, granulomatous inflammation was studied to gain insight into its effect on liver structure and function. A structural analog that does not precipitate within macrophages was also studied using micro-analytical approaches. Depleting macrophages was used to inhibit granuloma formation and assess its effect on drug bioaccumulation and toxicity. RESULTS: Granuloma-associated macrophages showed a distinct phenotype, differentiating them from non-granuloma macrophages. Granulomas were induced by insoluble CFZ cargo, but not by the more soluble analog, pointing to precipitation being a factor driving granulomatous inflammation. Granuloma-associated macrophages showed increased activation of lysosomal master-regulator transcription factor EB (TFEB). Inhibiting granuloma formation increased hepatic necrosis and systemic toxicity in CFZ-treated animals. CONCLUSIONS: Granuloma-associated macrophages are a specialized cell population equipped to actively sequester and stabilize cytotoxic chemotherapeutic agents. Thus, drug-induced granulomas may function as drug sequestering "organoids" -an induced, specialized sub-compartment- to limit tissue damage.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Clofazimina/farmacocinética , Macrófagos/metabolismo , Animais , Clofazimina/administração & dosagem , Clofazimina/efeitos adversos , Clofazimina/metabolismo , Sistemas de Liberação de Medicamentos , Granuloma/induzido quimicamente , Fígado/efeitos dos fármacos , Fígado/patologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos
3.
Antimicrob Agents Chemother ; 60(6): 3470-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27021320

RESUMO

Clofazimine (CFZ) is a poorly soluble antibiotic and anti-inflammatory drug indicated for the treatment of leprosy. In spite of its therapeutic value, CFZ therapy is accompanied by the formation of drug biocrystals that accumulate within resident tissue macrophages, without obvious toxicological manifestations. Therefore, to specifically elucidate the off-target consequences of drug bioaccumulation in macrophages, we compared the level of inflammasome activation in CFZ-accumulating organs (spleen, liver and lung) in mice after 2 and 8 weeks of CFZ treatment when the drug exists in soluble and insoluble (biocrystalline) forms, respectively. Surprisingly, the results showed a drastic reduction in caspase 1 and interleukin-1ß (IL-1ß) cleavage in the livers of mice treated with CFZ for 8 weeks (8-week-CFZ-treated mice) compared to 2-week-CFZ-treated and control mice, which was accompanied by a 3-fold increase in hepatic IL-1 receptor antagonist (IL-1RA) production and a 21-fold increase in serum IL-1RA levels. In the lung and spleen, IL-1ß cleavage and tumor necrosis factor alpha expression were unaffected by soluble or biocrystal CFZ forms. Functionally, there was a drastic reduction of carrageenan- and lipopolysaccharide-induced inflammation in the footpads and lungs, respectively, of 8-week-CFZ-treated mice. This immunomodulatory activity of CFZ biocrystal accumulation was attributable to the upregulation of IL-1RA, since CFZ accumulation had minimal effect in IL-1RA knockout mice or 2-week-CFZ-treated mice. In conclusion, CFZ accumulation and biocrystal formation in resident tissue macrophages profoundly altered the host's immune system and prompted an IL-1RA-dependent, systemic anti-inflammatory response.


Assuntos
Anti-Inflamatórios/farmacologia , Clofazimina/farmacologia , Inflamassomos/imunologia , Proteína Acessória do Receptor de Interleucina-1/biossíntese , Macrófagos/efeitos dos fármacos , Animais , Carragenina , Caspase 1/metabolismo , Inflamação/tratamento farmacológico , Proteína Acessória do Receptor de Interleucina-1/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Fígado/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia , Baço/metabolismo , Ativação Transcricional/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
4.
Proc Natl Acad Sci U S A ; 110(49): E4762-9, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24248375

RESUMO

In prostate cancer, multiple metastases from the same patient share similar copy number, mutational status, erythroblast transformation specific (ETS) rearrangements, and methylation patterns supporting their clonal origins. Whether actionable targets such as tyrosine kinases are also similarly expressed and activated in anatomically distinct metastatic lesions of the same patient is not known. We evaluated active kinases using phosphotyrosine peptide enrichment and quantitative mass spectrometry to identify druggable targets in metastatic castration-resistant prostate cancer obtained at rapid autopsy. We identified distinct phosphopeptide patterns in metastatic tissues compared with treatment-naive primary prostate tissue and prostate cancer cell line-derived xenografts. Evaluation of metastatic castration-resistant prostate cancer samples for tyrosine phosphorylation and upstream kinase targets revealed SRC, epidermal growth factor receptor (EGFR), rearranged during transfection (RET), anaplastic lymphoma kinase (ALK), and MAPK1/3 and other activities while exhibiting intrapatient similarity and interpatient heterogeneity. Phosphoproteomic analyses and identification of kinase activation states in metastatic castration-resistant prostate cancer patients have allowed for the prioritization of kinases for further clinical evaluation.


Assuntos
Descoberta de Drogas/métodos , Metástase Neoplásica/tratamento farmacológico , Fosfoproteínas/metabolismo , Medicina de Precisão/métodos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/enzimologia , Proteínas Tirosina Quinases/metabolismo , Western Blotting , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Masculino , Espectrometria de Massas , Fosforilação , Fosfotirosina/metabolismo , Análise de Componente Principal
5.
Cytometry A ; 87(9): 855-67, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26109497

RESUMO

Clofazimine (CFZ) is an optically active, red-colored chemotherapeutic agent that is FDA approved for the treatment of leprosy and is on the World Health Organization's list of essential medications. Interestingly, CFZ massively accumulates in macrophages where it forms crystal-like drug inclusions (CLDIs) after oral administration of the drug in animals and humans. The analysis of the fluorescence spectra of CLDIs formed by resident tissue macrophages revealed that CFZ, when accumulated as CLDIs, undergoes a red shift in fluorescence excitation (from Ex: 540-570 to 560-600 nm) and emission (Em: 560-580 to 640-700 nm) signal relative to the soluble and free-base crystal forms of CFZ. Using epifluorescence microscopy, CLDI(+) cells could be identified, relative to CLDI(-) cells, based on a >3-fold increment in mean fluorescence signal at excitation 640 nm and emission at 670 nm. Similarly, CLDI(+) cells could be identified by flow cytometry, based on a >100-fold increment in mean fluorescence signal using excitation lasers at 640 nm and emission detectors >600 nm. CLDI's fluorescence excitation and emission was orthogonal to that of cell viability dyes such as propidium iodide and 4,6-diamidino-2-phenylindole dihydrochloride (DAPI), cellular staining dyes such as Hoechst 33342 (nucleus) and FM 1-43 (plasma membrane), as well as many other fluorescently tagged antibodies used for immunophenotyping analyses. In vivo, >85% of CLDI(+) cells in the peritoneal exudate were F4/80(+) macrophages and >97% of CLDI(+) cells in the alveolar exudate were CD11c(+). Most importantly, the viability of cells was minimally affected by the presence of CLDIs. Accordingly, these results establish that CFZ fluorescence in CLDIs is suitable for quantitative flow cytometric phenotyping analysis and functional studies of xenobiotic sequestering macrophages.


Assuntos
Citometria de Fluxo/métodos , Corantes Fluorescentes/análise , Macrófagos/química , Macrófagos/fisiologia , Xantenos/análise , Xenobióticos/análise , Animais , Linhagem Celular , Clofazimina/análise , Clofazimina/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Xenobióticos/farmacologia
6.
Mol Pharm ; 12(7): 2517-27, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-25909959

RESUMO

Clofazimine (CFZ) is an FDA-approved leprostatic and anti-inflammatory drug that massively accumulates in macrophages, forming insoluble, intracellular crystal-like drug inclusions (CLDIs) during long-term oral dosing. Interestingly, when added to cells in vitro, soluble CFZ is cytotoxic because it depolarizes mitochondria and induces apoptosis. Accordingly, we hypothesized that, in vivo, macrophages detoxify CFZ by sequestering it in CLDIs. To test this hypothesis, CLDIs of CFZ-treated mice were biochemically isolated and then incubated with macrophages in vitro. The cell biological effects of phagocytosed CLDIs were compared to those of soluble CFZ. Unlike soluble CFZ, phagocytosis of CLDIs did not lead to mitochondrial destabilization or apoptosis. Rather, CLDIs altered immune signaling response pathways downstream of Toll-like receptor (TLR) ligation, leading to enhanced interleukin-1 receptor antagonist (IL-1RA) production, dampened NF-κB activation and tissue necrosis factor alpha (TNFα) production, and ultimately decreased TLR expression levels. In aggregate, our results constitute evidence that macrophages detoxify soluble CFZ by sequestering it in a biocompatible, insoluble form. The altered cellular response to TLR ligation suggests that CLDI formation may also underlie CFZ's anti-inflammatory activity.


Assuntos
Clofazimina/farmacologia , Imunidade Inata/efeitos dos fármacos , Proteína Antagonista do Receptor de Interleucina 1/antagonistas & inibidores , Fagocitose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NF-kappa B/imunologia
7.
Clin Cancer Res ; 29(24): 5140-5154, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37471463

RESUMO

PURPOSE: Despite limited genetic and histologic heterogeneity, Ewing sarcoma (EwS) tumor cells are transcriptionally heterogeneous and display varying degrees of mesenchymal lineage specification in vitro. In this study, we investigated if and how transcriptional heterogeneity of EwS cells contributes to heterogeneity of tumor phenotypes in vivo. EXPERIMENTAL DESIGN: Single-cell proteogenomic-sequencing of EwS cell lines was performed and integrated with patient tumor transcriptomic data. Cell subpopulations were isolated by FACS for assessment of gene expression and phenotype. Digital spatial profiling and human whole transcriptome analysis interrogated transcriptomic heterogeneity in EwS xenografts. Tumor cell subpopulations and matrix protein deposition were evaluated in xenografts and patient tumors using multiplex immunofluorescence staining. RESULTS: We identified CD73 as a biomarker of highly mesenchymal EwS cell subpopulations in tumor models and patient biopsies. CD73+ tumor cells displayed distinct transcriptional and phenotypic properties, including selective upregulation of genes that are repressed by EWS::FLI1, and increased migratory potential. CD73+ cells were distinguished in vitro and in vivo by increased expression of matrisomal genes and abundant deposition of extracellular matrix (ECM) proteins. In epithelial-derived malignancies, ECM is largely deposited by cancer-associated fibroblasts (CAF), and we thus labeled CD73+ EwS cells, CAF-like tumor cells. Marked heterogeneity of CD73+ EwS cell frequency and distribution was detected in tumors in situ, and CAF-like tumor cells and associated ECM were observed in peri-necrotic regions and invasive foci. CONCLUSIONS: EwS tumor cells can adopt CAF-like properties, and these distinct cell subpopulations contribute to tumor heterogeneity by remodeling the tumor microenvironment. See related commentary by Kuo and Amatruda, p. 5002.


Assuntos
Fibroblastos Associados a Câncer , Sarcoma de Ewing , Humanos , Sarcoma de Ewing/patologia , Fibroblastos Associados a Câncer/metabolismo , Microambiente Tumoral/genética , Linhagem Celular Tumoral , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Perfilação da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Proteína Proto-Oncogênica c-fli-1/genética , Regulação Neoplásica da Expressão Gênica
8.
bioRxiv ; 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37090655

RESUMO

Tumor heterogeneity is a major driver of cancer progression. In epithelial-derived malignancies, carcinoma-associated fibroblasts (CAFs) contribute to tumor heterogeneity by depositing extracellular matrix (ECM) proteins that dynamically remodel the tumor microenvironment (TME). Ewing sarcomas (EwS) are histologically monomorphous, mesenchyme-derived tumors that are devoid of CAFs. Here we identify a previously uncharacterized subpopulation of transcriptionally distinct EwS tumor cells that deposit pro-tumorigenic ECM. Single cell analyses revealed that these CAF-like cells differ from bulk EwS cells by their upregulation of a matrisome-rich gene signature that is normally repressed by EWS::FLI1, the oncogenic fusion transcription factor that underlies EwS pathogenesis. Further, our studies showed that ECM-depositing tumor cells express the cell surface marker CD73, allowing for their isolation ex vivo and detection in situ. Spatial profiling of tumor xenografts and patient biopsies demonstrated that CD73 + EwS cells and tumor cell-derived ECM are prevalent along tumor borders and invasive fronts. Importantly, despite loss of EWS::FLI1-mediated gene repression, CD73 + EwS cells retain expression of EWS::FLI1 and the fusion-activated gene signature, as well as tumorigenic and proliferative capacities. Thus, EwS tumor cells can be reprogrammed to adopt CAF-like properties and these transcriptionally and phenotypically distinct cell subpopulations contribute to tumor heterogeneity by remodeling the TME.

9.
J Cell Biochem ; 113(5): 1714-23, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22213010

RESUMO

MicroRNAs (miRNAs) are short noncoding ribonucleic acids known to affect gene expression at the translational level and there is mounting evidence that miRNAs play a role in the function of tumor-associated macrophages (TAMs). To aid the functional analyses of miRNAs in an in-vitro model of TAMs known as M2 macrophages, a transfection method to introduce artificial miRNA constructs or miRNA molecules into primary human monocytes is needed. Unlike differentiated macrophages or dendritic cells, undifferentiated primary human monocytes have been known to show resistance to lentiviral transduction. To circumvent this challenge, other techniques such as electroporation and chemical transfection have been used in other applications to deliver small gene constructs into human monocytes. To date, no studies have compared these two methods objectively to evaluate their suitability in the miRNA functional analysis of M2 macrophages. Of the methods tested, the electroporation of miRNA-construct containing plasmids and the chemical transfection of miRNA precursor molecules are the most efficient approaches. The use of a silencer siRNA labeling kit (Ambion) to conjugate Cy 3 fluorescence dyes to the precursor molecules allowed the isolation of successfully transfected cells with fluorescence-activated cell sorting. The chemical transfection of these dye-conjugated miRNA precursors yield an efficiency of 37.5 ± 0.6% and a cell viability of 74 ± 1%. RNA purified from the isolated cells demonstrated good quality, and was fit for subsequent mRNA expression qPCR analysis. While electroporation of plasmids containing miRNA constructs yield transfection efficiencies comparable to chemical transfection of miRNA precursors, these electroporated primary monocytes seemed to have lost their potential for differentiation. Among the most common methods of transfection, the chemical transfection of dye-conjugated miRNA precursors was determined to be the best-suited approach for the functional analysis of M2 macrophages.


Assuntos
Macrófagos/metabolismo , MicroRNAs/genética , Carbocianinas , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Células Cultivadas , Eletroporação , Corantes Fluorescentes , Humanos , Macrófagos/classificação , Macrófagos/patologia , MicroRNAs/química , Monócitos/metabolismo , Monócitos/patologia , Precursores de RNA/química , Precursores de RNA/genética , Transfecção/métodos , Células U937
10.
J Biol Chem ; 284(49): 34342-54, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19833726

RESUMO

CCL2 and interleukin (IL)-6 are among the most prevalent cytokines in the tumor microenvironment, with expression generally correlating with tumor progression and metastasis. CCL2 and IL-6 induced expression of each other in CD11b(+) cells isolated from human peripheral blood. It was demonstrated that both cytokines induce up-regulation of the antiapoptotic proteins cFLIP(L) (cellular caspase-8 (FLICE)-like inhibitory protein), Bcl-2, and Bcl-X(L) and inhibit the cleavage of caspase-8 and subsequent activation of the caspase-cascade, thus protecting cells from apoptosis under serum deprivation stress. Furthermore, both cytokines induced hyperactivation of autophagy in these cells. Upon CCL2 or IL-6 stimulation, CD11b(+) cells demonstrated a significant increase in the mannose receptor (CD206) and the CD14(+)/CD206(+) double-positive cells, suggesting a polarization of macrophages toward the CD206(+) M2-type phenotype. Caspase-8 inhibitors mimicked the cytokine-induced up-regulation of autophagy and M2 polarization. Furthermore, E64D and leupeptin, which are able to function as inhibitors of autophagic degradation, reversed the effect of caspase-8 inhibitors in the M2-macrophage polarization, indicating a role of autophagy in this mechanism. Additionally, in patients with advanced castrate-resistant prostate cancer, metastatic lesions exhibited an increased CD14(+)/CD206(+) double-positive cell population compared with normal tissues. Altogether, these findings suggest a role for CCL2 and IL-6 in the survival of myeloid monocytes recruited to the tumor microenvironment and their differentiation toward tumor-promoting M2-type macrophages via inhibition of caspase-8 cleavage and enhanced autophagy.


Assuntos
Antígeno CD11b/metabolismo , Quimiocina CCL2/metabolismo , Interleucina-6/metabolismo , Leucócitos Mononucleares/citologia , Macrófagos/metabolismo , Autofagia , Caspase 8/metabolismo , Caspases/metabolismo , Sobrevivência Celular , Citocinas/metabolismo , Humanos , Leucina/análogos & derivados , Leucina/farmacologia , Leupeptinas/metabolismo , Receptores de Lipopolissacarídeos/biossíntese , Monócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/metabolismo
11.
J Cell Biochem ; 106(4): 563-9, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19170075

RESUMO

Bone is the preferred site of prostate cancer metastasis, contributing to the morbidity and mortality of this disease. A key step in the successful establishment of prostate cancer bone metastases is activation of osteoclasts with subsequent bone resorption causing the release of several growth factors from the bone matrix. CD11b+ cells in bone marrow are enriched for osteoclast precursors. Conditioned media from prostate cancer PC-3 cells induces CD11b+ cells from human peripheral blood to differentiate into functional osteoclasts with subsequent bone resorption. Analysis of PC-3 conditioned media revealed high amounts of IL-6 and IL-8. CD11b+ cells were cultured with M-CSF and RANKL, IL-6, IL-8, and CCL2, alone or in combination. All of these conditions induced osteoclast fusion, but cells cultured with M-CSF, IL-6, IL-8, and CCL2 were capable of limited bone resorption. Co-incubation with IL-6 and IL-8 and the RANK inhibitor, RANK-Fc, failed to inhibit osteoclast fusion and bone resorption, suggesting a potential RANKL-independent mechanism of functional osteoclast formation. This study demonstrates that functional osteoclasts can be derived from CD11b+ cells derived from human PBMCs. Prostate cancer cells secrete factors, including IL-6 and IL-8, that play an important role in osteoclast fusion by a RANKL-independent mechanism.


Assuntos
Antígeno CD11b , Diferenciação Celular , Interleucina-6/fisiologia , Interleucina-8/fisiologia , Osteoclastos/patologia , Comunicação Parácrina , Neoplasias da Próstata/patologia , Ligante RANK/fisiologia , Reabsorção Óssea , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Citocinas/metabolismo , Citocinas/fisiologia , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Leucócitos Mononucleares/patologia , Masculino
12.
J Cell Biochem ; 107(1): 58-64, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19259948

RESUMO

Metastatic prostate cancer continues to be the second leading cause of cancer death in American men with an estimated 28,660 deaths in 2008. Recently, monocyte chemoattractant protein-1 (MCP-1, CCL2) has been identified as an important factor in the regulation of prostate metastasis. CCL2, shown to attract macrophages to the tumor site, has a direct promotional effect on tumor cell proliferation, migration, and survival. Previous studies have shown that anti-CCL2 antibodies given in combination with docetaxel were able to induce tumor regression in a pre-clinical prostate cancer model. A limitation for evaluating new treatments for metastatic prostate cancer to bone is the inability of imaging to objectively assess response to treatment. Diffusion-weighted MRI (DW-MRI) assesses response to anticancer therapies by quantifying the random (i.e., Brownian) motion of water molecules within the tumor mass, thus identifying cells undergoing apoptosis. We sought to measure the treatment response of prostate cancer in an osseous site to docetaxel, an anti-CCL2 agent, and combination treatments using DW-MRI. Measurements of tumor apparent diffusion coefficient (ADC) values were accomplished over time during a 14-day treatment period and compared to response as measured by bioluminescence imaging and survival studies. The diffusion data provided early predictive evidence of the most effective therapy, with survival data results correlating with the DW-MRI findings. DW-MRI is under active investigation in the pre-clinical and clinical settings to provide a sensitive and quantifiable means for early assessment of cancer treatment outcome.


Assuntos
Anticorpos/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Quimiocina CCL2/antagonistas & inibidores , Taxoides/uso terapêutico , Animais , Neoplasias Ósseas/secundário , Quimiocina CCL2/imunologia , Imagem de Difusão por Ressonância Magnética , Docetaxel , Sinergismo Farmacológico , Humanos , Masculino , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Res ; 67(8): 3524-8, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17440058

RESUMO

Prostate cancer ranks as the most common lethal malignancy diagnosed and the second leading cause of cancer mortality in American men. Although high response rates are achieved using androgen blockade as first-line therapy, most men progress toward hormone-refractory prostate cancer. Systemic chemotherapies have been shown to improve clinical outcome in hormone refractory prostate cancer patients; however, they are not curative. Due to the high incidence of bone involvement in hormone-refractory prostate cancer, assessment of treatment response in metastatic prostate cancer to the bone remains a major clinical need. In this current study, we investigated the feasibility of using the functional diffusion map (fDM) as an imaging biomarker for assessing early treatment response in a preclinical model of metastatic prostate cancer. The fDM biomarker requires a pretreatment and midtreatment magnetic resonance imaging diffusion map, which is used to quantify spatially distinct therapeutic-induced changes in the Brownian motion (or diffusion) of water within tumor tissue. Because water within tumor cells is in a restricted environment relative to extracellular water, loss of cell membrane integrity and cellular density during therapy will be detected by fDM as an increase in diffusion. Regions of significantly increased diffusion values were detected early using fDM in docetaxel-treated versus untreated metastatic prostate bone tumors at 7 days post treatment initiation (P < 0.05), indicating loss of tumor cell viability. Validation of fDM results was accomplished by histologic analysis of excised tissue. Results from this study show the capability of fDM as a biomarker for detection of bone cancer treatment efficacy, thus warranting clinical evaluation.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Ósseas/secundário , Neoplasias da Próstata/patologia , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Docetaxel , Lipídeos/administração & dosagem , Luciferases/análise , Luciferases/biossíntese , Luciferases/genética , Medições Luminescentes/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos SCID , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Taxoides/farmacologia , Transfecção
14.
J Invest Dermatol ; 138(3): 697-703, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29042210

RESUMO

Clofazimine is a weakly basic, Food and Drug Administration-approved antibiotic recommended by the World Health Organization to treat leprosy and multi-drug-resistant tuberculosis. Upon prolonged treatment, clofazimine extensively bioaccumulates and precipitates throughout the organism, forming crystal-like drug inclusions (CLDIs). Due to the drug's red color, it is widely believed that clofazimine bioaccumulation results in skin pigmentation, its most common side effect. To test whether clofazimine-induced skin pigmentation is due to CLDI formation, we synthesized a closely related clofazimine analog that does not precipitate under physiological pH and chloride conditions that are required for CLDI formation. Despite the absence of detectable CLDIs in mice, administration of this analog still led to significant skin pigmentation. In clofazimine-treated mice, skin cryosections revealed no evidence of CLDIs when analyzed with a microscopic imaging system specifically designed for detecting clofazimine aggregates. Rather, the reflectance spectra of the skin revealed a signal corresponding to the soluble, free base form of the drug. Consistent with the low concentrations of clofazimine in the skin, these results suggest that clofazimine-induced skin pigmentation is not due to clofazimine precipitation and CLDI formation, but rather to the partitioning of the circulating, free base form of the drug into subcutaneous fat.


Assuntos
Clofazimina/toxicidade , Pigmentação da Pele/efeitos dos fármacos , Animais , Clofazimina/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células RAW 264.7
15.
Biomed Opt Express ; 8(2): 860-872, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28270989

RESUMO

Following prolonged administration, certain orally bioavailable but poorly soluble small molecule drugs are prone to precipitate out and form crystal-like drug inclusions (CLDIs) within the cells of living organisms. In this research, we present a quantitative multi-parameter imaging platform for measuring the fluorescence and polarization diattenuation signals of cells harboring intracellular CLDIs. To validate the imaging system, the FDA-approved drug clofazimine (CFZ) was used as a model compound. Our results demonstrated that a quantitative multi-parameter microscopy image analysis platform can be used to study drug sequestering macrophages, and to detect the formation of ordered molecular aggregates formed by poorly soluble small molecule drugs in animals.

16.
J Pharm Sci ; 106(4): 1162-1174, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28007559

RESUMO

Prolonged (8 weeks) oral administration of clofazimine results in a profound pharmacodynamic response-bioaccumulation in macrophages (including Kupffer cells) as intracellular crystal-like drug inclusions (CLDIs) with an associated increase in interleukin-1 receptor antagonist production. Notably, CLDI formation in Kupffer cells concomitantly occurs with the formation of macrophage-centric granulomas. Accordingly, we sought to understand the impact of these events on host metabolism using 1H-nuclear magnetic resonance metabolomics. Mice received a clofazimine or vehicle-enriched (sham) diet for at least 8 weeks. At 2 weeks, the antimicrobial activity of clofazimine was evident by changes in urine metabolites. From 2 to 8 weeks, there was a striking change in metabolite levels indicative of a reorientation of host energy metabolism paralleling the onset of CLDI and granuloma formation. This was evidenced by a progressive reduction in urine levels of metabolites involved in one-carbon metabolism with corresponding increases in whole blood, and changes in metabolites associated with lipid, nucleotide and amino acid metabolism, and glycolysis. Although clofazimine-fed mice ate more, they gained less weight than control mice. Together, these results indicate that macrophage sequestration of clofazimine as CLDIs and granuloma formation is accompanied by a profound metabolic disruption in energy homeostasis and one-carbon metabolism.


Assuntos
Clofazimina/administração & dosagem , Clofazimina/metabolismo , Metabolismo Energético/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Metabolismo Energético/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
PLoS One ; 10(11): e0143161, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26571387

RESUMO

Pyrrole-imidazole (Py-Im) polyamides are high affinity DNA-binding small molecules that can inhibit protein-DNA interactions. In VCaP cells, a human prostate cancer cell line overexpressing both AR and the TMPRSS2-ERG gene fusion, an androgen response element (ARE)-targeted Py-Im polyamide significantly downregulates AR driven gene expression. Polyamide exposure to VCaP cells reduced proliferation without causing DNA damage. Py-Im polyamide treatment also reduced tumor growth in a VCaP mouse xenograft model. In addition to the effects on AR regulated transcription, RNA-seq analysis revealed inhibition of topoisomerase-DNA binding as a potential mechanism that contributes to the antitumor effects of polyamides in cell culture and in xenografts. These studies support the therapeutic potential of Py-Im polyamides to target multiple aspects of transcriptional regulation in prostate cancers without genotoxic stress.


Assuntos
Nylons/toxicidade , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA/química , DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , DNA Topoisomerases/química , DNA Topoisomerases/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/química , Masculino , Camundongos , Nylons/síntese química , Nylons/química , Proteínas de Fusão Oncogênica/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica , Pirróis/química , Receptores Androgênicos/metabolismo , Análise de Sequência de RNA , Transplante Heterólogo
18.
Biomaterials ; 23(2): 517-26, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11761173

RESUMO

An in vivo model of the inflammatory response to orthopaedic biomaterials was used to examine cellular and cytokine responses to polymer particles of ultra high molecular weight polyethylene (UHMWPE) and polymethylmethacrylate (PMMA), and metal particles of cobalt-chrome (Co-Cr) and titanium alloy (Ti-6Al-4V). Responses were determined separately and in combinations, to examine interactions between different forms of biomaterials. Murine air pouches were injected with particle suspensions, and reactions evaluated using histological, immunological, and molecular techniques. All particulate biomaterials caused significant increases in membrane thickness compared with control (saline) air pouches, with the highest reaction seen in response to Ti-6Al-4V particles. A synergistic increase in membrane thickness was observed when PMMA was combined with UHMWPE, suggesting that multiple biomaterial stimuli markedly increase the inflammatory reaction. Cellular analysis indicated that all particles increased the absolute number and the percentage of macrophages in the membrane over the control level, with the most pronounced increase due to individual biomaterial occurring with UHMWPE particles. Cytokine analysis revealed that biomaterials provoked a strong IL-1 response. Ti-6Al-4V stimulated the highest IL-6 gene transcription and the lowest IL-1 gene transcription. The data suggest that synergism in the inflammatory response to biomaterials may be important in adverse responses to orthopaedic wear debris.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Ligas de Cromo/efeitos adversos , Inflamação/induzido quimicamente , Polietilenos/efeitos adversos , Polimetil Metacrilato/efeitos adversos , Titânio/efeitos adversos , Ligas , Animais , Feminino , Interleucina-1/genética , Interleucina-1/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
19.
PLoS One ; 8(10): e76773, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24124593

RESUMO

Cell plasticity regulated by the balance between the mesenchymal to epithelial transition (MET) and the opposite program, EMT, is critical in the metastatic cascade. Several transcription factors (TFs) are known to regulate EMT, though the mechanisms of MET remain unclear. We demonstrate a novel function of two TFs, OVOL1 and OVOL2, as critical inducers of MET in human cancers. Our findings indicate that the OVOL-TFs control MET through a regulatory feedback loop with EMT-inducing TF ZEB1, and the regulation of mRNA splicing by inducing Epithelial Splicing Regulatory Protein 1 (ESRP1). Using mouse prostate tumor models we show that expression of OVOL-TFs in mesenchymal prostate cancer cells attenuates their metastatic potential. The role of OVOL-TFs as inducers of MET is further supported by expression analyses in 917 cancer cell lines, suggesting their role as crucial regulators of epithelial-mesenchymal cell plasticity in cancer.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias/metabolismo , Neoplasias/patologia , Fatores de Transcrição/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Análise por Conglomerados , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Splicing de RNA , Transcrição Gênica
20.
Neoplasia ; 14(1): 65-73, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22355275

RESUMO

Currently incurable, prostate cancer metastasis has a remarkable ability to spread to the skeleton. Previous studies demonstrated that interactions mediated by the cancer-associated Thomsen-Friedenreich glycoantigen (TF-Ag) and the carbohydrate-binding protein galectin-3 play an important role in several rate-limiting steps of cancer metastasis such as metastatic cell adhesion to bone marrow endothelium, homotypic tumor cell aggregation, and clonogenic survival and growth. This study investigated the ability of a synthetic small-molecular-weight nontoxic carbohydrate-based TF-Ag mimic lactulose-L-leucine (Lac-L-Leu) to inhibit these processes in vitro and, ultimately, prostate cancer bone metastasis in vivo. Using an in vivo mouse model, based on intracardiac injection of human PC-3 prostate carcinoma cells stably expressing luciferase, we investigated the ability of Lac-L-Leu to impede the establishment and growth of bone metastasis. Parallel-flow chamber assay, homotypic aggregation assay, modified Boyden chamber assay, and clonogenic growth assay were used to assess the effects of Lac-L-Leu on tumor cell adhesion to the endothelium, homotypic tumor cell aggregation, transendothelial migration, and clonogenic survival and growth, respectively. We report that daily intraperitoneal administration of Lac-L-Leu resulted in a three-fold (P < .05) decrease in metastatic tumor burden compared with the untreated control. Mechanistically, the effect of Lac-L-Leu, which binds and inhibits galectins by mimicking essential structural features of the TF-Ag, was associated with a dose-dependent inhibition of prostate cancer cell adhesion to bone marrow endothelium, homotypic aggregation, transendothelial migration, and clonogenic growth. We conclude that small-molecular-weight carbohydrate-based compounds targeting ß-galactoside-mediated interactions could provide valuable means for controlling and preventing metastatic prostate cancer spread to the skeleton.


Assuntos
Antígenos Glicosídicos Associados a Tumores , Antineoplásicos/farmacologia , Materiais Biomiméticos/farmacologia , Neoplasias Ósseas/prevenção & controle , Lactulose/análogos & derivados , Neoplasias da Próstata/prevenção & controle , Animais , Neoplasias Ósseas/secundário , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Galectina 3/antagonistas & inibidores , Humanos , Lactulose/farmacologia , Leucina/farmacologia , Masculino , Camundongos , Camundongos SCID , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa