Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genome Res ; 14(1): 37-43, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14672979

RESUMO

Recent studies indicated that recombination is strongly mutagenic. In particular, data from the mouse pseudoautosomal boundary (PAB) suggested that locally intensive recombination increased the nucleotide substitution rate by more than 100-fold and greatly increased the GC content. Here we study the rates of nucleotide substitution in eight introns of the human and great ape XG gene, which spans the boundary between the pseudoautosomal region 1 (PAR1) and the X-specific region. Contrary to what is expected under the above hypothesis, our sequence data from humans and great apes reveal that the PAR1 introns of XG have actually evolved slightly slower than X-specific introns. Only when a New World monkey was compared with hominoids were the rates slightly increased in the PAR1 introns. In terms of base composition, although the intergenic regions of the human PAR1 show a significant increase of G and C nucleotides, the base composition of the surveyed PAR1 introns is similar to that of the X-specific introns. Direct and indirect evidence indicates that the recombination rate is, indeed, much higher in PAR1 introns than in X-specific introns, and that the present PAB has persisted since the common ancestor of hominoids. Therefore, the mutagenic effect of recombination is far weaker than previously proposed, at least in hominoid PABs.


Assuntos
Variação Genética/genética , Hominidae/genética , Recombinação Genética/genética , Animais , Antígenos de Grupos Sanguíneos/genética , Cebidae/genética , Moléculas de Adesão Celular/genética , Evolução Molecular , Sequência Rica em GC/genética , Gorilla gorilla/genética , Humanos , Íntrons/genética , Camundongos , Mutagênese , Pan paniscus/genética , Pongo pygmaeus/genética , Homologia de Sequência do Ácido Nucleico
2.
Genome Res ; 12(8): 1277-85, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12176935

RESUMO

Comparison is a fundamental tool for analyzing DNA sequence. Interspecies sequence comparison is particularly powerful for inferring genome function and is based on the simple premise that conserved sequences are likely to be important. Thus, the comparison of a genomic sequence with its orthologous counterpart from another species is increasingly becoming an integral component of genome analysis. In ideal situations, such comparisons are performed with orthologous sequences from multiple species. To facilitate multispecies comparative sequence analysis, a robust and scalable strategy for simultaneously constructing sequence-ready bacterial artificial chromosome (BAC) contig maps from targeted genomic regions has been developed. Central to this approach is the generation and utilization of "universal" oligonucleotide-based hybridization probes ("overgo" probes), which are designed from sequences that are highly conserved between distantly related species. Large collections of these probes are used en masse to screen BAC libraries from multiple species in parallel, with the isolated clones assembled into physical contig maps. To validate the effectiveness of this strategy, efforts were focused on the construction of BAC-based physical maps from multiple mammalian species (chimpanzee, baboon, cat, dog, cow, and pig). Using available human and mouse genomic sequence and a newly developed computer program to design the requisite probes, sequence-ready maps were constructed in all species for a series of targeted regions totaling approximately 16 Mb in the human genome. The described approach can be used to facilitate the multispecies comparative sequencing of targeted genomic regions and can be adapted for constructing BAC contig maps in other vertebrates.


Assuntos
Clonagem Molecular/métodos , Mapeamento de Sequências Contíguas/métodos , DNA/genética , Homologia de Sequência do Ácido Nucleico , Animais , Gatos , Bovinos , Cromossomos Artificiais Bacterianos/genética , Sondas de DNA/genética , Cães , Genoma , Genoma Humano , Biblioteca Genômica , Humanos , Internet , Camundongos , Hibridização de Ácido Nucleico/métodos , Pan troglodytes , Papio , Especificidade da Espécie , Suínos
3.
Genome Res ; 13(1): 55-63, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12529306

RESUMO

Duplications have long been postulated to be an important mechanism by which genomes evolve. Interspecies genomic comparisons are one method by which the origin and molecular mechanism of duplications can be inferred. By comparative mapping in human, mouse, and rat, we previously found evidence for a recent chromosome-fission event that occurred in the mouse lineage. Cytogenetic mapping revealed that the genomic segments flanking the fission site appeared to be duplicated, with copies residing near the centromere of multiple mouse chromosomes. Here we report the mapping and sequencing of the regions of mouse chromosomes 5 and 6 involved in this chromosome-fission event as well as the results of comparative sequence analysis with the orthologous human and rat genomic regions. Our data indicate that the duplications associated with mouse chromosomes 5 and 6 are recent and that the resulting duplicated segments share significant sequence similarity with a series of regions near the centromeres of the mouse chromosomes previously identified by cytogenetic mapping. We also identified pericentromeric duplicated segments shared between mouse chromosomes 5 and 1. Finally, novel mouse satellite sequences as well as putative chimeric transcripts were found to be associated with the duplicated segments. Together, these findings demonstrate that pericentromeric duplications are not restricted to primates and may be a common mechanism for genome evolution in mammals.


Assuntos
Centrômero/genética , Duplicação Gênica , Animais , Quimera/genética , Cromossomos/genética , Cromossomos Humanos/genética , Sequência Conservada/genética , DNA Satélite/genética , Evolução Molecular , Marcadores Genéticos/genética , Humanos , Camundongos , Mapeamento Físico do Cromossomo/métodos , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa