Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(2): 255-266, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36658237

RESUMO

Despite tumor-associated macrophages (TAMs) playing a key role in shaping the tumor microenvironment (TME), the mechanisms by which TAMs influence the TME and contribute to cancer progression remain unclear. Here, we show that the N6-methyladenosine reader YTHDF2 regulates the antitumor functions of TAMs. YTHDF2 deficiency in TAMs suppressed tumor growth by reprogramming TAMs toward an antitumoral phenotype and increasing their antigen cross-presentation ability, which in turn enhanced CD8+ T cell-mediated antitumor immunity. YTHDF2 deficiency facilitated the reprogramming of TAMs by targeting interferon-γ-STAT1 signaling. The expression of YTHDF2 in TAMs was regulated by interleukin-10-STAT3 signaling. Selectively targeting YTHDF2 in TAMs using a Toll-like receptor 9 agonist-conjugated small interfering RNA reprogrammed TAMs toward an antitumoral phenotype, restrained tumor growth and enhanced the efficacy of PD-L1 antibody therapy. Collectively, our findings describe the role of YTHDF2 in orchestrating TAMs and suggest that YTHDF2 inhibition is an effective approach to enhance cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Macrófagos , Macrófagos Associados a Tumor , Neoplasias/metabolismo , Imunoterapia , Microambiente Tumoral , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
Mol Cell ; 75(6): 1188-1202.e11, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31399345

RESUMO

The maternal-to-zygotic transition (MZT) is a conserved and fundamental process during which the maternal environment is converted to an environment of embryonic-driven development through dramatic reprogramming. However, how maternally supplied transcripts are dynamically regulated during MZT remains largely unknown. Herein, through genome-wide profiling of RNA 5-methylcytosine (m5C) modification in zebrafish early embryos, we found that m5C-modified maternal mRNAs display higher stability than non-m5C-modified mRNAs during MZT. We discovered that Y-box binding protein 1 (Ybx1) preferentially recognizes m5C-modified mRNAs through π-π interactions with a key residue, Trp45, in Ybx1's cold shock domain (CSD), which plays essential roles in maternal mRNA stability and early embryogenesis of zebrafish. Together with the mRNA stabilizer Pabpc1a, Ybx1 promotes the stability of its target mRNAs in an m5C-dependent manner. Our study demonstrates an unexpected mechanism of RNA m5C-regulated maternal mRNA stabilization during zebrafish MZT, highlighting the critical role of m5C mRNA modification in early development.


Assuntos
5-Metilcitosina/metabolismo , Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/fisiologia , Estabilidade de RNA/fisiologia , RNA Mensageiro Estocado/metabolismo , Peixe-Zebra/embriologia , Animais , Células HeLa , Humanos , Camundongos , RNA Mensageiro Estocado/genética , Peixe-Zebra/genética
3.
EMBO Rep ; 24(10): e56009, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37642636

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) are cells mainly present in the bone marrow and capable of forming mature blood cells. However, the epigenetic mechanisms governing the homeostasis of HSPCs remain elusive. Here, we demonstrate an important role for histone deacetylase 6 (HDAC6) in regulating this process. Our data show that the percentage of HSPCs in Hdac6 knockout mice is lower than in wild-type mice due to decreased HSPC proliferation. HDAC6 interacts with isocitrate dehydrogenase 1 (IDH1) and deacetylates IDH1 at lysine 233. The deacetylation of IDH1 inhibits its catalytic activity and thereby decreases the 5-hydroxymethylcytosine level of ten-eleven translocation 2 (TET2) target genes, changing gene expression patterns to promote the proliferation of HSPCs. These findings uncover a role for HDAC6 and IDH1 in regulating the homeostasis of HSPCs and may have implications for the treatment of hematological diseases.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Animais , Camundongos , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células da Medula Óssea/metabolismo , Homeostase
4.
Mol Cell ; 61(4): 507-519, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26876937

RESUMO

The regulatory role of N(6)-methyladenosine (m(6)A) and its nuclear binding protein YTHDC1 in pre-mRNA splicing remains an enigma. Here we show that YTHDC1 promotes exon inclusion in targeted mRNAs through recruiting pre-mRNA splicing factor SRSF3 (SRp20) while blocking SRSF10 (SRp38) mRNA binding. Transcriptome assay with PAR-CLIP-seq analysis revealed that YTHDC1-regulated exon-inclusion patterns were similar to those of SRSF3 but opposite of SRSF10. In vitro pull-down assay illustrated a competitive binding of SRSF3 and SRSF10 to YTHDC1. Moreover, YTHDC1 facilitates SRSF3 but represses SRSF10 in their nuclear speckle localization, RNA-binding affinity, and associated splicing events, dysregulation of which, as the result of YTHDC1 depletion, can be restored by reconstitution with wild-type, but not m(6)A-binding-defective, YTHDC1. Our findings provide the direct evidence that m(6)A reader YTHDC1 regulates mRNA splicing through recruiting and modulating pre-mRNA splicing factors for their access to the binding regions of targeted mRNAs.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Sítios de Ligação , Éxons , Células HeLa , Humanos , Fatores de Processamento de RNA , RNA Mensageiro/metabolismo , Fatores de Processamento de Serina-Arginina
5.
Am J Respir Cell Mol Biol ; 69(4): 456-469, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37402274

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive fatal interstitial lung disease without an effective cure. Herein, we explore the role of 3,5,3'-triiodothyronine (T3) administration on lung alveolar regeneration and fibrosis at the single-cell level. T3 supplementation significantly altered the gene expression in fibrotic lung tissues. Immune cells were rapidly recruited into the lung after the injury; there were much more M2 macrophages than M1 macrophages in the lungs of bleomycin-treated mice; and M1 macrophages increased slightly, whereas M2 macrophages were significantly reduced after T3 treatment. T3 enhanced the resolution of pulmonary fibrosis by promoting the differentiation of Krt8+ transitional alveolar type II epithelial cells into alveolar type I epithelial cells and inhibiting fibroblast activation and extracellular matrix production potentially by regulation of Nr2f2. In addition, T3 regulated the crosstalk of macrophages with fibroblasts, and the Pros1-Axl signaling axis significantly facilitated the attenuation of fibrosis. The findings demonstrate that administration of a thyroid hormone promotes alveolar regeneration and resolves fibrosis mainly by regulation of the cellular state and cell-cell communication of alveolar epithelial cells, macrophages, and fibroblasts in mouse lungs in comprehensive ways.


Assuntos
Fibrose Pulmonar Idiopática , Camundongos , Animais , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Fibrose , Bleomicina/farmacologia , Fibroblastos/metabolismo , Hormônios Tireóideos/metabolismo , Análise de Sequência de RNA
6.
Proc Biol Sci ; 290(1990): 20221963, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629101

RESUMO

Wolbachia are the most widely distributed intracellular bacteria, and their most common effect on host phenotype is cytoplasmic incompatibility (CI). A variety of models have been proposed to decipher the molecular mechanism of CI, among which the host modification (HM) model predicts that Wolbachia effectors play an important role in sperm modification. However, owing to the complexity of spermatogenesis and testicular cell-type heterogeneity, whether Wolbachia have different effects on cells at different stages of spermatogenesis or whether these effects are linked with CI remains unknown. Therefore, we used single-cell RNA sequencing to analyse gene expression profiles in adult male Drosophila testes that were infected or uninfected by Wolbachia. We found that Wolbachia significantly affected the proportion of different types of germ cells and affected multiple metabolic pathways in germ cells. Most importantly, Wolbachia had the greatest impact on germline stem cells, resulting in dysregulated expression of genes related to DNA compaction, and Wolbachia infection also influenced the histone-to-protamine transition in the late stage of sperm development. These results support the HM model and suggest that future studies on Wolbachia-induced CI should focus on cells in the early stages of spermatogenesis.


Assuntos
Drosophila , Wolbachia , Animais , Masculino , Drosophila/genética , Wolbachia/genética , Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , Transcriptoma , Sêmen , Espermatogênese , Citoplasma/microbiologia
7.
Nature ; 549(7671): 273-276, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28869969

RESUMO

N6-methyladenosine (m6A) has been identified as the most abundant modification on eukaryote messenger RNA (mRNA). Although the rapid development of high-throughput sequencing technologies has enabled insight into the biological functions of m6A modification, the function of m6A during vertebrate embryogenesis remains poorly understood. Here we show that m6A determines cell fate during the endothelial-to-haematopoietic transition (EHT) to specify the earliest haematopoietic stem/progenitor cells (HSPCs) during zebrafish embryogenesis. m6A-specific methylated RNA immunoprecipitation combined with high-throughput sequencing (MeRIP-seq) and m6A individual-nucleotide-resolution cross-linking and immunoprecipitation with sequencing (miCLIP-seq) analyses reveal conserved features on zebrafish m6A methylome and preferential distribution of m6A peaks near the stop codon with a consensus RRACH motif. In mettl3-deficient embryos, levels of m6A are significantly decreased and emergence of HSPCs is blocked. Mechanistically, we identify that the delayed YTHDF2-mediated mRNA decay of the arterial endothelial genes notch1a and rhoca contributes to this deleterious effect. The continuous activation of Notch signalling in arterial endothelial cells of mettl3-deficient embryos blocks EHT, thereby repressing the generation of the earliest HSPCs. Furthermore, knockdown of Mettl3 in mice confers a similar phenotype. Collectively, our findings demonstrate the critical function of m6A modification in the fate determination of HSPCs during vertebrate embryogenesis.


Assuntos
Adenosina/análogos & derivados , Diferenciação Celular , Células Endoteliais/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , RNA Mensageiro/metabolismo , Peixe-Zebra/embriologia , Adenosina/metabolismo , Animais , Diferenciação Celular/genética , Códon de Terminação/genética , Sequência Consenso , Células Endoteliais/metabolismo , Técnicas de Silenciamento de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/genética , Imunoprecipitação , Metilação , Metiltransferases/deficiência , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , Receptor Notch1/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
8.
PLoS Biol ; 16(6): e2004880, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29879109

RESUMO

N6-methyladenosine (m6A) RNA methylation is the most abundant modification on mRNAs and plays important roles in various biological processes. The formation of m6A is catalyzed by a methyltransferase complex including methyltransferase-like 3 (METTL3) as a key factor. However, the in vivo functions of METTL3 and m6A modification in mammalian development remain unclear. Here, we show that specific inactivation of Mettl3 in mouse nervous system causes severe developmental defects in the brain. Mettl3 conditional knockout (cKO) mice manifest cerebellar hypoplasia caused by drastically enhanced apoptosis of newborn cerebellar granule cells (CGCs) in the external granular layer (EGL). METTL3 depletion-induced loss of m6A modification causes extended RNA half-lives and aberrant splicing events, consequently leading to dysregulation of transcriptome-wide gene expression and premature CGC death. Our findings reveal a critical role of METTL3-mediated m6A in regulating the development of mammalian cerebellum.


Assuntos
Adenosina/análogos & derivados , Cerebelo/embriologia , Metiltransferases/metabolismo , RNA Mensageiro/genética , Adenosina/metabolismo , Processamento Alternativo/genética , Animais , Apoptose/genética , Células Cultivadas , Cerebelo/anormalidades , Cerebelo/patologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Regulação da Expressão Gênica/genética , Metilação , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo
9.
Nucleic Acids Res ; 47(5): 2244-2262, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30698743

RESUMO

RNA-binding proteins (RBPs) play pivotal roles in directing RNA fate and function. Yet the current annotation of RBPs is largely limited to proteins carrying known RNA-binding domains. To systematically reveal dynamic RNA-protein interactions, we surveyed the human proteome by a protein array-based approach and identified 671 proteins with RNA-binding activity. Among these proteins, 525 lack annotated RNA-binding domains and are enriched in transcriptional and epigenetic regulators, metabolic enzymes, and small GTPases. Using an improved CLIP (crosslinking and immunoprecipitation) method, we performed genome-wide target profiling of isocitrate dehydrogenase 1 (IDH1), a novel RBP. IDH1 binds to thousands of RNA transcripts with enriched functions in transcription and chromatin regulation, cell cycle and RNA processing. Purified IDH1, but not an oncogenic mutant, binds directly to GA- or AU-rich RNA that are also enriched in IDH1 CLIP targets. Our study provides useful resources of unconventional RBPs and IDH1-bound transcriptome, and convincingly illustrates, for the first time, the in vivo and in vitro RNA targets and binding preferences of IDH1, revealing an unanticipated complexity of RNA regulation in diverse cellular processes.


Assuntos
Isocitrato Desidrogenase/metabolismo , Proteoma/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcriptoma , Elementos Ricos em Adenilato e Uridilato , Cromatina/genética , Cromatina/metabolismo , Reagentes de Ligações Cruzadas/química , Células-Tronco Embrionárias , GTP Fosfo-Hidrolases/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Imunoprecipitação , Isocitrato Desidrogenase/genética , Redes e Vias Metabólicas/genética , Motivos de Nucleotídeos , Análise Serial de Proteínas , Ligação Proteica , RNA Mensageiro/genética , Reprodutibilidade dos Testes
10.
FASEB J ; 33(2): 2971-2981, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30339471

RESUMO

Intramuscular fat is considered a potential factor that is associated with meat quality in animal production and insulin resistance in humans. N6-methyladenosine (m6A) modification of mRNA plays an important role in regulating adipogenesis. However, the effects of m6A on the adipogenesis of intramuscular preadipocytes and associated mechanisms remain unknown. Here, we performed m6A sequencing to compare m6A methylome of the longissimus dorsi muscles (LDMs) between Landrace pigs (lean-type breed) and Jinhua pigs (obese-type breed with higher levels of intramuscular fat). Transcriptome-wide m6A profiling of porcine LDMs was highly conserved with humans and mice. Furthermore, we identified a unique methylated gene in Jinhua pigs named mitochondrial carrier homology 2 ( MTCH2). The m6A levels of MTCH2 mRNA were reduced by introducing a synonymous mutation, and adipogenesis test results showed that the MTCH2 mutant was inferior with regard to adipogenesis compared with the MTCH2 wild-type. We then found that MTCH2 protein expression was positively associated with m6A levels, and an YTH domain family protein 1-RNA immunoprecipitation-quantitative PCR assay indicated that MTCH2 mRNA was a target of the YTH domain family protein 1. This study provides comprehensive m6A profiles of LDM transcriptomes in pigs and suggests an essential role for m6A modification of MTCH2 in intramuscular fat regulation.-Jiang, Q., Sun, B., Liu, Q., Cai, M., Wu, R., Wang, F., Yao, Y., Wang, Y., Wang, X. MTCH2 promotes adipogenesis in intramuscular preadipocytes via an m6A-YTHDF1-dependent mechanism.


Assuntos
Adenosina/análogos & derivados , Adipócitos/citologia , Adipogenia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Músculo Esquelético/citologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenosina/química , Adipócitos/metabolismo , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Metilação , Proteínas de Transporte da Membrana Mitocondrial/genética , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Suínos
11.
Mol Cancer ; 18(1): 161, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31722709

RESUMO

BACKGROUND: Dynamic N6-methyladenosine (m6A) RNA modification generated and erased by N6-methyltransferases and demethylases regulates gene expression, alternative splicing and cell fate. Ocular melanoma, comprising uveal melanoma (UM) and conjunctival melanoma (CM), is the most common primary eye tumor in adults and the 2nd most common melanoma. However, the functional role of m6A modification in ocular melanoma remains unclear. METHODS: m6A assays and survival analysis were used to explore decreased global m6A levels, indicating a late stage of ocular melanoma and a poor prognosis. Multiomic analysis of miCLIP-seq, RNA-seq and Label-free MS data revealed that m6A RNA modification posttranscriptionally promoted HINT2 expression. RNA immunoprecipitation (RIP)-qPCR and dual luciferase assays revealed that HINT2 mRNA specifically interacted with YTHDF1. Furthermore, polysome profiling analysis indicated a greater amount of HINT2 mRNA in the translation pool in ocular melanoma cells with higher m6A methylation. RESULTS: Here, we show that RNA methylation significantly inhibits the progression of UM and CM. Ocular melanoma samples showed decreased m6A levels, indicating a poor prognosis. Changes in global m6A modification were highly associated with tumor progression in vitro and in vivo. Mechanistically, YTHDF1 promoted the translation of methylated HINT2 mRNA, a tumor suppressor in ocular melanoma. CONCLUSIONS: Our work uncovers a critical function for m6A methylation in ocular melanoma and provides additional insight into the understanding of m6A modification.


Assuntos
Adenosina/análogos & derivados , Neoplasias Oculares/genética , Melanoma/genética , Proteínas Mitocondriais/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , Adenosina/metabolismo , Apoptose , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias Oculares/metabolismo , Neoplasias Oculares/mortalidade , Neoplasias Oculares/patologia , Perfilação da Expressão Gênica , Humanos , Melanoma/metabolismo , Melanoma/mortalidade , Melanoma/patologia , Metilação , Proteínas Mitocondriais/metabolismo , Prognóstico , RNA Mensageiro/metabolismo
12.
EMBO J ; 34(12): 1630-47, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25770585

RESUMO

Nonsense-mediated mRNA decay (NMD) is a post-transcriptional mechanism that targets aberrant transcripts and regulates the cellular RNA reservoir. Genetic modulation in vertebrates suggests that NMD is critical for cellular and tissue homeostasis, although the underlying mechanism remains elusive. Here, we generate knockout mice lacking Smg6/Est1, a key nuclease in NMD and a telomerase cofactor. While the complete loss of Smg6 causes mouse lethality at the blastocyst stage, inducible deletion of Smg6 is compatible with embryonic stem cell (ESC) proliferation despite the absence of telomere maintenance and functional NMD. Differentiation of Smg6-deficient ESCs is blocked due to sustained expression of pluripotency genes, normally repressed by NMD, and forced down-regulation of one such target, c-Myc, relieves the differentiation block. Smg6-null embryonic fibroblasts are viable as well, but are refractory to cellular reprograming into induced pluripotent stem cells (iPSCs). Finally, depletion of all major NMD factors compromises ESC differentiation, thus identifying NMD as a licensing factor for the switch of cell identity in the process of stem cell differentiation and somatic cell reprograming.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Degradação do RNAm Mediada por Códon sem Sentido/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Diferenciação Celular/genética , Clonagem Molecular , Biologia Computacional , Primers do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas Histológicas , Immunoblotting , Hibridização in Situ Fluorescente , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
13.
Ecology ; 100(3): e02597, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30615203

RESUMO

In some insect nursery pollination mutualisms, plant hosts impose net costs to uncooperative "cheater" symbionts. These "sanctions" promote mutualism stability but their precise adaptive nature remains unclear. In fig-wasp mutualisms host trees (Ficus spp.) are only pollinated by female agaonid wasps whose larvae only use galled fig flowers as food. In actively pollinated systems, if wasps fail to pollinate, sanctions can result via fig abortion, killing all wasp offspring, or by increased offspring mortality within un-aborted figs. These sanctions result from selective investment to pollinated inflorescences, a mechanism present in almost all angiosperms. To more fully understand how selective investment functions as sanctions requires the measurement of variation in their costs and benefits to both hosts and symbionts. Gynodioecious fig-tree-fig-wasp mutualisms are particularly suitable for this because pollen and wasps are produced only in the figs of "male" trees and seeds only in the figs of "female" trees. Male and female trees thus incur different net costs of pollen absence, and costs of sanctions to pollen-free "cheater" wasps only occur in male trees. We used the actively pollinated host tree Ficus hispida and introduced into male and female figs either 1, 3, 5, 7, or 9 all pollen-laden "cooperative" (P+) or all pollen-free "cheater" (P-) wasps. Abortion in both male and female trees was highest in P- figs, with P- fig abortion higher in females (~90%) than in males (~40%). Fig abortion was negatively associated with foundress number mainly in P+ figs; in P- figs abortion was only weakly associated with the number of "cheater" wasps, especially in female figs. In un-aborted male figs, wasp offspring mortality was higher in P- figs than in P+ figs, and in P- figs correlated positively with foundress (cheater) number. Increased offspring mortality was biased against female wasp offspring and likely resulted from reduced larval nutrition in unpollinated flowers. Variation in selective investment to P- figs thus reflects costs and benefits of pollen absence/presence to hosts, variation that translates directly to net costs to cheater wasps.


Assuntos
Ficus , Vespas , Animais , Feminino , Masculino , Polinização , Simbiose , Árvores
14.
Int J Obes (Lond) ; 42(11): 1912-1924, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29487348

RESUMO

BACKGROUND/OBJECTIVE: N6-methyladenosine (m6A) modification of mRNA plays an important role in regulating adipogenesis. However, its underlying mechanism remains largely unknown. SUBJECTS/METHODS: Using Jinhua and Landrace pigs as fat and lean models, we presented a comprehensive transcriptome-wide m6A profiling in adipose tissues from these two pig breeds. Two differentially methylated genes were selected to explore the mechanisms of m6A-mediated regulation of gene function. RESULTS: The ratio of m6A/A in the layer of backfat (LB) was significantly higher in Landrace than that in Jinhua. Transcriptome-wide m6A profiling revealed that m6A modification on mRNA occurs in the conserved sequence motif of RRACH and that the pig transcriptome contains 0.53-0.91 peak per actively expressed transcript. The relative density of m6A peaks in the 3'UTR were higher than in 5'UTR. Genes with common m6A peaks from both Landrace (L-LB) and Jinhua (J-LB) were enriched in RNA splicing and cellular lipid metabolic process. The unique m6A peak genes (UMGs) from L-LB were mainly enriched in the extracellular matrix (ECM) and collagen catabolic process, whereas the UMGs from J-LB are mainly involved in RNA splicing, etc. Lipid metabolism processes were not significantly enriched in the UMGs from L-LB or J-LB. Uncoupling protein-2 (UCP2) and patatin-like phospholipase domain containing 2 (PNPLA2) were two of the UMGs in L-LB. Synonymous mutations (MUT) were conducted to reduce m6A level of UCP2 and PNPLA2 mRNAs. Adipogenesis test showed that UCP2-MUT further inhibited adipogenesis, while PNPLA2-MUT promoted lipid accumulation compared with UCP2-WT and PNPLA2-WT, respectively. Further study showed m6A negatively mediates UCP2 protein expression and positively mediates PNPLA2 protein expression. m6A modification affects the translation of PNPLA2 most likely through YTHDF1, whereas UCP2 is likely neither the target of YTHDF2 nor the target of YTHDF1. CONCLUSION: Our data demonstrated a conserved and yet dynamically regulated m6A methylome in pig transcriptomes and provided an important resource for studying the function of m6A epitranscriptomic modification in obesity development.


Assuntos
Adipócitos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Obesidade/patologia , RNA Mensageiro/metabolismo , Magreza/patologia , Proteína Desacopladora 2/metabolismo , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Lipase/metabolismo , Análise de Sequência de RNA , Suínos , Regulação para Cima/fisiologia
15.
Reproduction ; 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27742864

RESUMO

The syncytiotrophoblast (STB) plays a key role in maintaining the function of the placenta during human pregnancy. However, the molecular network that orchestrates STB development remains elusive. The aim of this study was to obtain broad and deep insight into human STB formation via transcriptomics. We adopted RNA sequencing (RNA-Seq) to investigate genes and isoforms involved in forskolin (FSK)-induced fusion of BeWo cells. BeWo cells were treated with 50 µM FSK or dimethylsulfoxide (DMSO) as a vehicle control for 24 and 48 h, and the mRNAs at 0, 24 and 48 h was sequenced. We detected 28,633 expressed genes and identified 1,902 differentially expressed genes (DEGs) after FSK treatment for 24 and 48 h. Among the 1,902 DEGs, 461 were increased and 395 were decreased at 24 h, while 879 were up-regulated and 763 were down-regulated at 48 h. When the 856 DEGs identified at 24 h were traced individually at 48 h, they separated into 6 dynamic patterns via a K-means algorithm, and most were enriched in down-even and up-even patterns. Moreover, the Gene Ontology (GO) terms syncytium formation, cell junction assembly, cell fate commitment, calcium ion transport, regulation of epithelial cell differentiation and cell morphogenesis involved in differentiation were clustered, and the MAPK pathway was most significantly regulated. Analyses of alternative splicing isoforms detected 123,200 isoforms, of which 1,376 were differentially expressed. The present deep analysis of the RNA-Seq data of BeWo cell fusion provides important clues for understanding the mechanisms underlying human STB formation.

16.
Nucleic Acids Res ; 42(3): 1593-605, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24214992

RESUMO

DNA methylation has been proven to be a critical epigenetic mark important for various cellular processes. Here, we report that redox-active quinones, a ubiquitous class of chemicals found in natural products, cancer therapeutics and environment, stimulate the conversion of 5 mC to 5 hmC in vivo, and increase 5 hmC in 5751 genes in cells. 5 hmC increase is associated with significantly altered gene expression of 3414 genes. Interestingly, in quinone-treated cells, labile iron-sensitive protein ferritin light chain showed a significant increase at both mRNA and protein levels indicating a role of iron regulation in stimulating Tet-mediated 5 mC oxidation. Consistently, the deprivation of cellular labile iron using specific chelator blocked the 5 hmC increase, and a delivery of labile iron increased the 5 hmC level. Moreover, both Tet1/Tet2 knockout and dimethyloxalylglycine-induced Tet inhibition diminished the 5 hmC increase. These results suggest an iron-regulated Tet-dependent DNA demethylation mechanism mediated by redox-active biomolecules.


Assuntos
Metilação de DNA , Dioxigenases/metabolismo , Ferro/metabolismo , Quinonas/farmacologia , 5-Metilcitosina/metabolismo , Animais , Apoferritinas/biossíntese , Apoferritinas/genética , Linhagem Celular , Linhagem Celular Tumoral , Cloranila/farmacologia , Citosina/análogos & derivados , Citosina/metabolismo , Metilação de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Genoma , Humanos , Camundongos , Oxirredução , Proteínas Proto-Oncogênicas/genética , Quinonas/química
17.
J Assist Reprod Genet ; 33(5): 637-645, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26899834

RESUMO

BACKGROUND: Preimplantation genetic testing (PGT) requires an invasive biopsy to obtain embryonic material for genetic analysis. The availability of a less invasive procedure would increase the overall efficacy of PGT. The aim of the study was to explore the potential of blastocoele fluid (BF) as an alternative source of embryonic DNA for PGT. METHODS: Collection of BF was performed by aspiration with a fine needle prior to vitrification. BF DNA was subjected to whole-genome amplification (WGA) and analyzed by high-resolution next-generation sequencing (NGS). RESULTS: A high-quality WGA product was obtained from 8 of 11 (72.7 %) samples. Comparison of matching BF and blastomere samples showed that the genomic representation of sequencing reads was consistently similar with respect to density and regional coverage across the 24 chromosomes. A genome-wide survey of the sample sequencing data also indicated that BF was highly representative of known single gene sequences, and this observation was validated by PCR analyses of ten randomly selected genes, with an overall efficiency of 84 %. CONCLUSION: This study provides further evidence that BF is a promising alternative source of DNA for PGT.


Assuntos
Blastômeros , Diagnóstico Pré-Implantação/métodos , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
18.
J Anim Ecol ; 84(4): 1133-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25661043

RESUMO

Sanctioning or punishing is regarded as one of the most important dynamics in the evolution of cooperation. However, it has not been empirically examined yet whether or not such enforcement selection by sanctioning or punishing and classical theories like kin or reciprocity selection are separate mechanisms contributing to the evolution of cooperation. In addition, it remains largely unclear what factors determine the intensity or effectiveness of sanction. Here, we show that in the obligate, interspecific cooperation between figs and fig wasps, the hosted figs can discriminatively sanction cheating individuals by decreasing the offspring development ratio. Concurrently, the figs can reward the cooperative pollinators with a higher offspring development ratio. This sanction intensity and effectiveness largely depend on how closely the host and symbiont are related either in terms of reciprocity exchange or genetic similarity as measured by the reciprocal of the foundress number. Our results imply that in asymmetric systems, symbionts might be forced to evolve to be cooperative or even altruistic through discriminative sanction against the noncooperative symbiont and reward to the cooperative symbiont by the host (i.e. through a game of 'carrot and stick').


Assuntos
Ficus/fisiologia , Polinização , Vespas/fisiologia , Animais , Evolução Biológica , Ficus/parasitologia , Simbiose , Vespas/crescimento & desenvolvimento
19.
Curr Diab Rep ; 14(5): 486, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24627050

RESUMO

The Fat mass and obesity associated (FTO) gene is a newly identified genetic factor for obesity. However, the exact molecular mechanisms responsible for the effect of FTO on obesity remain largely unknown. Recent studies from genome-wide associated studies reveal that genetic variants in the FTO gene are associated not only with human adiposity and metabolic disorders, but also with cancer, a highly obesity-associated disease as well. Data from animal and cellular models further demonstrate that the perturbation of FTO enzymatic activity dysregulates genes related to energy metabolism, causing the malfunction of energy and adipose tissue homeostasis in mice. The most significant advance about FTO research is the recent discovery of FTO as the first N6-methyl-adenosine (m(6)A) RNA demethylase that catalyzes the m(6)A demethylation in α-ketoglutarate - and Fe(2+)-dependent manners. This finding provides the strong evidence that the dynamic and reversible chemical m(6)A modification on RNA may act as a novel epitranscriptomic marker. Furthermore, the FTO protein was observed to be partially localized onto nuclear speckles enriching mRNA processing factors, implying a potential role of FTO in regulating RNA processing. This review summarizes the recent progress about biological functions of FTO through disease-association studies as well as the data from in vitro and in vivo models, and highlights the biochemical features of FTO that might be linked to obesity.


Assuntos
Doenças Metabólicas/genética , Neoplasias/genética , Obesidade/genética , Proteínas/genética , Tecido Adiposo , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Epigênese Genética , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Doenças Metabólicas/fisiopatologia , Camundongos , Oxigenases de Função Mista/genética , Neoplasias/fisiopatologia , Obesidade/fisiopatologia , Oxo-Ácido-Liases/genética , Polimorfismo de Nucleotídeo Único , RNA Mensageiro
20.
Food Funct ; 15(1): 208-222, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38047533

RESUMO

Obesity, a global health concern, is linked with numerous metabolic and inflammatory disorders. Tibetan tea, a traditional Chinese beverage rich in theabrownin, is investigated in this study for its potential anti-obesity effects. Our work demonstrates that Tibetan tea consumption in C57BL/6J mice significantly mitigates obesity-related phenotypic changes without altering energy intake. Computational prediction revealed that Tibetan tea consumption reconstructs gene expression in white adipose tissue (WAT), promoting lipid catabolism and thereby increasing energy expenditure. We also note that Tibetan tea suppresses inflammation in WAT, reducing adipocyte hyperplasia and immune cell infiltration. Furthermore, Tibetan tea induces profound metabolic reprogramming, influencing amino acid metabolic pathways, specifically enhancing glutamine synthesis, which in turn suppresses pro-inflammatory chemokine production. These findings highlight Tibetan tea as a potential candidate in obesity prevention, providing a nuanced understanding of its capacity to modulate the cellular composition and metabolic landscape of WAT.


Assuntos
Reprogramação Metabólica , Obesidade , Camundongos , Animais , Tibet , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/prevenção & controle , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Chá/metabolismo , Tecido Adiposo/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa