Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 34(8): 10590-10604, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32557852

RESUMO

Psoriasis is a chronic relapsing inflammatory skin disease, affecting up to 3% of the global population. Accumulating evidence suggests that the complement system is involved in its pathogenesis. Our previous study revealed that the C5a/C5aR1 pathway is crucial for disease development. However, the underlying mechanisms remain largely unknown. To explore potential mechanisms, psoriatic skin lesions and histological changes were assessed following imiquimod (IMQ) cream treatment. Inflammatory cytokine expression was tested by real-time RT-PCR. Immunohistochemistry and flow cytometry were used to identify inflammatory cell infiltration and interleukin (IL-17A) IL-17A expression. A C5aR1 antagonist (C5aR1a) and PI3K inhibitor (wortmannin) were used for blocking experiments (both in vivo and in vitro) to explore the mechanism. C5a/C5aR1-pathway inhibition significantly attenuated psoriasis-like skin lesions with decreased epidermal hyperplasia, downregulated type 17-related inflammatory gene expression, and reduced IL-17A-producing γδ-T cell responses. Mechanistically, C5a/C5aR1 promoted the latter phenotype via PI3K-Akt signaling. Consistently, C5aR1 deficiency clearly ameliorated IMQ-induced chronic psoriasiform dermatitis, with a significant decrease in IL-17A expression. Finally, blocking C5aR1 signaling further decreased psoriasiform skin inflammation in IL-17-deficient mice. Results suggest that C5a/C5aR1 mediates experimental psoriasis and skin inflammation by upregulating IL-17A expression from γδ-T cells. Blocking C5a/C5aR1/IL-17A axis is expected to be a promising strategy for psoriasis treatment.


Assuntos
Inflamação/metabolismo , Interleucina-17/metabolismo , Linfócitos Intraepiteliais/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Pele/metabolismo , Animais , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Imiquimode/farmacologia , Inflamação/tratamento farmacológico , Linfócitos Intraepiteliais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Pele/efeitos dos fármacos
2.
Int Immunopharmacol ; 85: 106692, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32535539

RESUMO

Complement component 3 (C3), a pivotal molecule in the complement system, is an essential immune mediator in various diseases, including psoriasis. However, the mechanistic role of C3 in psoriasis pathology and development remains elusive. Here, we showed that C3 deficiency dramatically augmented imiquimod-induced psoriasis-like skin inflammation, characterized by greater epidermal hyperplasia, inflammatory cell infiltration, and inflammatory gene expression than those in wild-type counterparts. In addition, C3 deficiency promoted imiquimod-induced skin cell apoptosis and supported greater proportions of IFN-γ+ T cells in the inflamed tissues. Accordingly, C3 supplement in the C3 deficient mice reduced skin inflammation and cells apoptosis. Moreover, blocking apoptosis with Z-VAD-FMK, a broad caspase inhibitor, markedly attenuated imiquimod-induced psoriasis-like skin inflammation and IFN-γ+ T cell responses in C3-deficient mice. Collectively, our results suggest that C3 prevents imiquimod-induced psoriasis-like skin inflammation by inhibiting apoptosis.


Assuntos
Complemento C3/imunologia , Psoríase/imunologia , Animais , Apoptose , Complemento C3/análise , Complemento C3/genética , Citocinas/imunologia , Feminino , Imiquimode , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/patologia , Interleucina-17/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Psoríase/induzido quimicamente , Psoríase/patologia , Pele/imunologia , Pele/patologia , Linfócitos T/imunologia
3.
Front Immunol ; 10: 1866, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447855

RESUMO

Psoriasis is one of the most common chronic inflammatory skin diseases, affecting ~2% of the population. The lack of characterization of the pathogenesis of psoriasis has hindered efficient clinical treatment of the disease. In our study, we observed that expression of complement component 5a receptor 1(C5aR1) was significantly increased in skin lesions of both imiquimod (IMQ) and IL23-induced psoriatic mice and patients with psoriasis. C5aR1 deficiency or treatment with C5a receptor 1 antagonist (C5aR1a) in mice significantly attenuated psoriasis-like skin lesions and expression of inflammatory cytokines and chemokines. Moreover, C5aR1 deficiency significantly decreased IMQ-induced infiltration of plasmacytoid dendritic cells (pDCs), monocytes and neutrophils in psoriatic skin lesions and functions of pDCs, evidenced by the remarkable reduction in the IMQ-induced production of interferon-α (IFN-α) and tumor necrosis factor α (TNF-α), and FMS-like tyrosine kinase 3 ligand (FLT3L)-dependent pDCs differentiation. Accordingly, in vitro treatment with recombinant C5a accelerated pDCs migration and the differentiation of bone marrow cells into pDCs. Furthermore, biopsies of psoriatic patients showed a dramatic increase of C5aR1+ pDCs infiltration in psoriatic skin lesions, compared to healthy subjects. Our results provide direct evidence that C5a/C5aR1 signaling plays a critical role in the pathogenesis of psoriasis. Inhibition of C5a/C5aR1 pathway is expected to be beneficial in the treatment of patients with psoriasis.


Assuntos
Complemento C5a/imunologia , Psoríase/imunologia , Receptor da Anafilatoxina C5a/imunologia , Animais , Complemento C5a/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Psoríase/metabolismo , Psoríase/patologia , Receptor da Anafilatoxina C5a/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa