Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(2): e2211416120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595665

RESUMO

Soft systems that respond to external stimuli, such as heat, magnetic field, and light, find applications in a range of fields including soft robotics, energy harvesting, and biomedicine. However, most of the existing systems exhibit nondirectional, nastic movement as they can neither grow nor sense the direction of stimuli. In this regard, artificial systems are outperformed by organisms capable of directional growth in response to the sense of stimuli or tropic growth. Inspired by tropic growth schemes of plant cells and fungal hyphae, here we report an artificial multistimuli-responsive tropic tip-growing system based on nonsolvent-induced phase separation of polymer solution, where polymer precipitates as its solvent dissolves into surrounding nonsolvent. We provide a theoretical framework to predict the size and velocity of growing precipitates and demonstrate its capability of sensing the directions of gravity, mechanical contact, and light and adjusting its growing direction in response. Exploiting the embedded physical intelligence of sensing and responding to external stimuli, our soft material system achieves multiple tasks including printing 3D structures in a confined space, bypassing mechanical obstacles, and shielded transport of liquids within water.


Assuntos
Células Vegetais , Polímeros , Gravitação
2.
Small ; 19(9): e2205048, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36534830

RESUMO

Repositioning is a common guideline for the prevention of pressure injuries of bedridden or wheelchair patients. However, frequent repositioning could deteriorate the quality of patient's life and induce secondary injuries. This paper introduces a method for continuous multi-site monitoring of pressure and temperature distribution from strategically deployed sensor arrays at skin interfaces via battery-free, wireless ionic liquid pressure sensors. The wirelessly delivered power enables stable operation of the ionic liquid pressure sensor, which shows enhanced sensitivity, negligible hysteresis, high linearity and cyclic stability over relevant pressure range. The experimental investigations of the wireless devices, verified by numerical simulation of the key responses, support capabilities for real-time, continuous, long-term monitoring of the pressure and temperature distribution from multiple sensor arrays. Clinical trials on two hemiplegic patients confined on bed or wheelchair integrated with the system demonstrate the feasibility of sensor arrays for a decrease in pressure and temperature distribution under minimal repositioning.


Assuntos
Líquidos Iônicos , Cadeiras de Rodas , Humanos , Temperatura , Tecnologia sem Fio , Pele
3.
Soft Matter ; 19(45): 8820-8831, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37947035

RESUMO

A cross-linked polymer network immersed in a solvent will absorb molecules from its surroundings, leading to transient swelling. Under the constraint of a semi-permeable membrane, the system will swell less and generate a larger internal pressure in return, a system rarely analyzed to date. We use a nonlinear poroelastic theory to model the kinetics of swelling under mechanical constraint. We find the simulation results agree well with our experimental data using hydrogel beads made of a mixture of 3-sulfopropyl acrylate potassium salt and acrylamide, bathed in water. Understanding and predicting the response speed and the actuation stress developed during the swelling of constrained hydrogels can guide the design of polymer-based soft actuators with unusually high strength.

4.
Langmuir ; 38(26): 8003-8011, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35737666

RESUMO

Despite innovative advances in stent technology, restenosis remains a crucial issue for the clinical implantation of stents. Reactive oxygen species (ROS) are known to potentially accelerate re-endothelialization and lower the risk of restenosis by selectively controlling endothelial cells and smooth muscle cells. Recently, several studies have been conducted to develop biodegradable polymeric stents. As biodegradable polymers are not electrically conductive, double metallic layers are required to constitute a galvanic couple for ROS generation. Here, we report a new biodegradable hybrid material composed of a biodegradable polymer substrate and double anodic/cathodic metallic layers for enhancing re-endothelialization and suppressing restenosis. Pure Zn and Mg films (3 µm thick) were deposited onto poly-l-lactic acid (PLLA) substrates by DC magnetron sputtering, and a long-term immersion test using biodegradable hybrid materials was performed in phosphate-buffered solution (PBS) for 2 weeks. The concentrations of superoxide anions and hydrogen peroxide generated by the corrosion of biodegradable metallic films were monitored every 1 or 2 days. Both superoxide anions and hydrogen peroxide were seamlessly generated even after the complete consumption of the anodic Mg layer. It was confirmed that the superoxide anions and hydrogen peroxide were formed not only by the galvanic corrosion between the anode and cathode layers but also by the corrosion of a single Mg or Zn layer. The corrosion products of the Mg and Zn films in PBS were phosphate, oxide, or chloride of the biodegradable metals. Thus, it is concluded that ROS generation by the corrosion of PLLA-based hybrid materials can be sustained until the exhaustion of the cathode metal layer.


Assuntos
Células Endoteliais , Peróxido de Hidrogênio , Materiais Biocompatíveis , Corrosão , Teste de Materiais , Metais , Fosfatos , Polímeros , Espécies Reativas de Oxigênio , Stents , Superóxidos
5.
Soft Matter ; 18(35): 6487-6510, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000330

RESUMO

Stretchable iontronics have recently been developed as an ideal interface to promote the interaction between humans and devices. Since the materials that use ions as charge carriers are typically transparent and stretchable, they have been used to fabricate devices with diverse functions with intrinsic transparency and stretchability. With the development of device design, material design has also been investigated to mitigate the issues associated with ionic materials, such as their weak mechanical properties, poor electrical properties, or poor environmental stabilities. In this review, we describe the recent progress on the design of materials in stretchable iontronics. By classifying stretchable ionic materials into three types of components (ionic conductors, ionic semiconductors, and ionic insulators), the issues each component has and the strategies to solve them are introduced, specifically in terms of molecular interactions. We then discuss the existing hurdles and challenges to be handled and shine light on the possibilities and opportunities from the insight of molecular interactions.

6.
Macromol Rapid Commun ; 43(19): e2200271, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35686322

RESUMO

Structure changes mediated by anisotropic volume changes of stimuli-responsive hydrogels are useful for many research fields, yet relatively simple structured objects are mostly used due to limitation in fabrication methods. To fabricate complex 3 dimensional (3D) structures that undergo structure changes in response to external stimuli, jammed microgel-based inks containing precursors of stimuli-responsive hydrogels are developed for extrusion-based 3D printing. Specifically, the jammed microgel-based inks are prepared by absorbing precursors of poly(acrylic acid) or poly(N-isopropylacrylamide) in poly(acrylamide) (PAAm) microgels, and jamming them. The inks exhibit shear-thinning and self-healing properties that allow extrusion of the inks through a nozzle and rapid stabilization after printing. Stimuli-mediated volume changes are observed for the extruded structures when they are post-crosslinked by UV light to form interpenetrating networks of PAAm microgels and stimuli-responsive hydrogels. Using this method, a dumbbell-shaped object that can transform to a biconvex shape, and a gripper that can grasp and lift an object in response to stimuli are 3D-printed. The jammed microgel-based 3D printing strategy is a versatile method useful for variety of applications as diverse types of monomers absorbable in the microgels can be used to fabricate complex 3D objects transformable by external stimuli.


Assuntos
Tinta , Microgéis , Hidrogéis/química , Concentração de Íons de Hidrogênio , Impressão Tridimensional , Temperatura
7.
Proc Natl Acad Sci U S A ; 116(28): 13807-13815, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31221759

RESUMO

As biological signals are mainly based on ion transport, the differences in signal carriers have become a major issue for the intimate communication between electrical devices and biological areas. In this respect, an ionic device which can directly interpret ionic signals from biological systems needs to be designed. Particularly, it is also required to amplify the ionic signals for effective signal processing, since the amount of ions acquired from biological systems is very small. Here, we report the signal amplification in ionic systems as well as sensing through the modified design of polyelectrolyte hydrogel-based ionic diodes. By designing an open-junction structure, ionic signals from the external environment can be directly transmitted to an ionic diode. Moreover, the minute ionic signals injected into the devices can also be amplified to a large amount of ions. The signal transduction mechanism of the ion-to-ion amplification is suggested and clearly verified by revealing the generation of breakdown ionic currents during an ion injection. Subsequently, various methods for enhancing the amplification are suggested.

8.
Soft Matter ; 17(32): 7554-7564, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34337636

RESUMO

Materials that transform shapes responding to external stimuli can bring unprecedented innovations to soft matter physics, soft robotics, wearable electronics, and architecture. As most conventional soft actuation technologies induce large deformations only in a preprogrammed manner at designated locations, the material systems capable of agile reversible deformations without prescribed patterns are strongly desired for versatile mechanical morphing systems. Here we report a morphable liquid interface coated with dielectric particles, or a particle raft, which can reversibly change its topography under an external electric field. The rafts change from flat floors to towers within seconds, and the morphed structures are even capable of horizontal translation. Our experiments and theory show that the raft deformation is driven by electrostatic attraction between particles and electrodes, while being modulated by electric discharge. A broad range of materials serving as electrodes, e.g., human fingers and transparent polymers, suggests this system's diverse applications, including the human-machine interface and the three-dimensional physical display.


Assuntos
Polímeros , Robótica , Eletrodos , Eletrônica , Humanos , Microdomínios da Membrana
9.
Macromol Rapid Commun ; 41(13): e2000129, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32346943

RESUMO

Transparent and stretchable electrodes (TSEs) are a key technology for the next generation of stretchable electronics and optoelectronics. Metallic nanofibers are widely used because of their good optoelectrical properties, but they demonstrate low stretchability. To enhance stretchability, fabricating in-plane buckled nanofibers with the aid of a prestrained substrate has become crucial in this research field. Here, a composite comprising shape memory polymer-TSE (SMP-TSE) using crosslinked polycyclooctene as a substrate, which shows wrinkle-free deformation and switchable optical transparency, is fabricated. Because of its considerable elongation without residual strain and the shape memory behavior of polycyclooctene, in-plane buckled nanofibers are formed effectively. For fabrication of SMP-TSE, continuous and thin metallic nanofiber that can maintain its structural integrity is required; therefore, electrospinning and an ultraviolet reduction process to create a free-standing, conductive, nanofiber network are used. Because of its in-plane buckled nanofibers, the electrode maintained its resistance during 3000 cycles of a bending test and 900 cycles of a tensile test. Furthermore, SMP-TSE is able to electrically control its temperature, optical transparency, elastic modulus, and shape memory behavior. Finally, the use of SMP-TSE in a smart display that can control its optical and mechanical properties is demonstrated.


Assuntos
Nanofibras , Materiais Inteligentes , Condutividade Elétrica , Eletrodos , Prata
10.
Nature ; 489(7414): 133-6, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22955625

RESUMO

Hydrogels are used as scaffolds for tissue engineering, vehicles for drug delivery, actuators for optics and fluidics, and model extracellular matrices for biological studies. The scope of hydrogel applications, however, is often severely limited by their mechanical behaviour. Most hydrogels do not exhibit high stretchability; for example, an alginate hydrogel ruptures when stretched to about 1.2 times its original length. Some synthetic elastic hydrogels have achieved stretches in the range 10-20, but these values are markedly reduced in samples containing notches. Most hydrogels are brittle, with fracture energies of about 10 J m(-2) (ref. 8), as compared with ∼1,000 J m(-2) for cartilage and ∼10,000 J m(-2) for natural rubbers. Intense efforts are devoted to synthesizing hydrogels with improved mechanical properties; certain synthetic gels have reached fracture energies of 100-1,000 J m(-2) (refs 11, 14, 17). Here we report the synthesis of hydrogels from polymers forming ionically and covalently crosslinked networks. Although such gels contain ∼90% water, they can be stretched beyond 20 times their initial length, and have fracture energies of ∼9,000 J m(-2). Even for samples containing notches, a stretch of 17 is demonstrated. We attribute the gels' toughness to the synergy of two mechanisms: crack bridging by the network of covalent crosslinks, and hysteresis by unzipping the network of ionic crosslinks. Furthermore, the network of covalent crosslinks preserves the memory of the initial state, so that much of the large deformation is removed on unloading. The unzipped ionic crosslinks cause internal damage, which heals by re-zipping. These gels may serve as model systems to explore mechanisms of deformation and energy dissipation, and expand the scope of hydrogel applications.


Assuntos
Hidrogéis/química , Resinas Acrílicas/química , Alginatos/química , Sequência de Carboidratos , Elasticidade , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Hidrogéis/síntese química , Teste de Materiais , Dados de Sequência Molecular , Polímeros/síntese química , Polímeros/química
11.
Sci Adv ; 10(28): eadp0729, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985860

RESUMO

Self-healing ability of materials, particularly polymers, improves their functional stabilities and lifespan. To date, the designs for self-healable polymers have relied on specific intermolecular interactions or chemistries. We report a design methodology for self-healable polymers based on glass transition. Statistical copolymer series of two monomers with different glass transition temperatures (Tg) were synthesized, and their self-healing tendency depends on the Tg of the copolymers and the constituents. Self-healing occurs more efficiently when the difference in Tg between two monomer units is larger, within a narrow Tg range of the copolymers, irrespective of their functional groups. The self-healable copolymers are elastomeric and nonpolar. The strategy to graft glass transition onto self-healing would expand the scope of polymer design.

12.
Adv Mater ; : e2406103, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39036840

RESUMO

Thermo-responsive hydrogels can generate the actuation force through volumetric transitions in response to temperature changes. However, their weak mechanical properties and fragile actuation performance limit robust applications. Existing approaches to enhance these properties have typically depended on additional components, leading to an unavoidable interference to the actuation performance. In this work, robust thermo-responsive hydrogels are fabricated through solvent engineering. A particular solvent, N-methylformamide, interacts affinitively with the carbonyl group of N-isopropylacrylamide monomer, solubilizes the monomer with extremely high concentration, stabilizes chain propagation during polymerization, and greatly increases chain lengths and entanglements of the resulting polymer. The synthesized hydrogels are highly elastic, strong, and tough, displaying remarkable thermo-responsive contractile actuation. The simple synthetic process can broaden its applicability in designing robust functional hydrogel applications.

13.
ACS Appl Mater Interfaces ; 16(3): 4013-4023, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38189267

RESUMO

Electrical anisotropy, which is characterized by the efficient transmission of electrical signals in specific directions, is prevalent in both natural and engineered systems. However, traditional anisotropically conductive materials are often rigid and dry, thus limiting their utility in applications aiming for the seamless integration of various technologies with biological tissues. In the present study, we introduce a method for precisely controlling the microstructures of conductive and insulating polymers to create highly anisotropically conductive composite hydrogels. Our methodology involves combining aligned poly(vinyl alcohol) microfibrils, infused poly(3,4-ethylenedioxythiophene) polystyrenesulfonate, and sodium citrate precipitation to form dense, aligned conductive paths. This significantly enhances the electrical conductivity anisotropy (σ∥/σ⊥ ≈ 60.8) within these composite hydrogels.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38943223

RESUMO

Se-free n-type (Bi,Sb)2Te3 thermoelectric materials, outperforming traditional n-type Bi2(Te,Se)3, emerge as a compelling candidate for practical applications of recovering low-grade waste heat. A 100% improvement in the maximum ZT of n-type Bi1.7Sb0.3Te3 is demonstrated by using melt-spinning and excess Te-assisted transient liquid phase sintering (LPS). Te-rich sintering promotes the formation of intrinsic defects (TeBi), elevating the carrier concentration and enhancing the electrical conductivity. Melt-spinning with excess Te fine-tunes the electronic band, resulting in a high power-factor of 0.35 × 10-3 W·m-1 K-2 at 300 K. Rapid volume change during sintering induces the formation of dislocation networks, significantly suppressing the lattice thermal conductivity (0.4 W·m-1 K-1). The developed n-type legs achieve a high maximum ZT of 1.0 at 450 K resulting in a 70% improvement in the output power of the thermoelectric device (7.7 W at a temperature difference of 250 K). This work highlights the synergy between melt-spinning and transient LPS, advancing the tailored control of both electronic and thermal properties in thermoelectric technology.

15.
Mater Horiz ; 10(6): 2215-2225, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37000519

RESUMO

In this work, we describe the development of an implantable ionic device that can deliver a spatially targeted light source to tumor tissues in a controllable manner. The motivation behind our approach is to overcome certain limitations of conventional approaches where light is delivered from the outside of the body and only achieves low penetration depths. Also, to avoid the issues that come from the periodic need to replace the device's battery, we utilize a wireless power transfer system synchronized with light operation in an implantable structure. In our testing of this implanted, soft ionic, gel-based device that receives power wirelessly, we were able to clearly observe its capability to effectively deliver light in a harmonious and stable configuration to adjacent tissues. This approach reduces the mechanical inconsistencies seen in conventional systems that are induced by mismatches between the mechanical strength of conventional metallic components and that of biological tissues. The light delivering performance of our device was studied in depth under the various conditions set by adjusting the area of the gel receivers, the ion concentration and the ion types used in the gel components. The enhanced antitumor effects of our device were observed through in vitro cell tests, in comparison with treatments using the conventional approach of using direct light from outside the body. Full encapsulation using biocompatible elastomers enables our device to provide good functional stability, while implantation for about 3 weeks in the in vivo model showed the effective targeted photodynamic treatments made possible by our approach. Our advanced approach of designing the implantable platform based on ionic gel components allows us to iteratively irradiate a target with light whenever required, making the technology particularly suited to long-term treatment of residual tumors while facilitating further practical and clinical development.


Assuntos
Fotoquimioterapia , Tecnologia sem Fio , Próteses e Implantes , Fontes de Energia Elétrica , Tecnologia
16.
Adv Mater ; 35(42): e2303655, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37433455

RESUMO

Living cells efflux intracellular ions for maintaining cellular life, so intravital measurements of specific ion signals are of significant importance for studying cellular functions and pharmacokinetics. In this work, de novo synthesis of artificial K+ -selective membrane and its integration with polyelectrolyte hydrogel-based open-junction ionic diode (OJID) is demonstrated, achieving a real-time K+ -selective ion-to-ion current amplification in complex bioenvironments. By mimicking biological K+ channels and nerve impulse transmitters, in-line K+ -binding G-quartets are introduced across freestanding lipid bilayers by G-specific hexylation of monolithic G-quadruplex, and the pre-filtered K+ flow is directly converted to amplified ionic currents by the OJID with a fast response time at 100 ms intervals. By the synergistic combination of charge repulsion, sieving, and ion recognition, the synthetic membrane allows K+ transport exclusively without water leakage; it is 250× and 17× more permeable toward K+ than monovalent anion, Cl- , and polyatomic cation, N-methyl-d-glucamine+ , respectively. The molecular recognition-mediated ion channeling provides a 500% larger signal for K+ as compared to Li+ (0.6× smaller than K+ ) despite the same valence. Using the miniaturized device, non-invasive, direct, and real-time K+ efflux monitoring from living cell spheroids is achieved with minimal crosstalk, specifically in identifying osmotic shock-induced necrosis and drug-antidote dynamics.


Assuntos
Quadruplex G , Canais Iônicos , Canais Iônicos/metabolismo , Transporte Biológico , Cátions/química , Fenômenos Fisiológicos Celulares , Potássio
17.
Bioact Mater ; 25: 796-806, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37056265

RESUMO

During the past decade, there has been extensive research toward the possibility of exploring magnesium and its alloys as biocompatible and biodegradable materials for implantable applications. Its practical medical application, however, has been limited to specific areas owing to rapid corrosion in the initial stage and the consequent complications. Surface coatings can significantly reduce the initial corrosion of Mg alloys, and several studies have been carried out to improve the adhesion strength of the coating to the surfaces of the alloys. The composition of hydroxyapatite (HAp) is very similar to that of bone tissue; it is one of the most commonly used coating materials for bone-related implants owing to favorable osseointegration post-implantation. In this study, HAp was coated on Mg using nanosecond laser coating, combining the advantages of chemical and physical treatments. Photothermal heat generated in the liquid precursor by the laser improved the adhesion of the coating through the precipitation and growth of HAp at the localized nanosecond laser focal area and increased the corrosion resistance and cell adhesion of Mg. The physical, crystallographic, and chemical bondings were analyzed to explore the mechanism through which the surface adhesion between Mg and the HAp coating layer increased. The applicability of the coating to Mg screws used for clinical devices and improvement in its corrosion property were confirmed. The liquid environment-based laser surface coating technique offers a simple and quick process that does not require any chemical ligands, and therefore, overcomes a potential obstacle in its clinical use.

18.
Adv Mater ; 35(52): e2307165, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945054

RESUMO

Unlike pigment-based colors, which are determined by their molecular structure, diverse colors can be expressed by a regular arrangement of nanomaterials. However, existing techniques for constructing such nanostructures have struggled to combine high precision and speed, resulting in a narrow gamut, and prolonged color fabrication time. Here, this work reports a phototunable mono ink that can generate a wide range of colors by controlling regularly arranged nanostructure. Core-shell growth controlled by polymerization time precisely regulates the distance between arranged particles at a nanometer-scale, enabling the generation of various colors. Moreover, the wide and thin arrangement induces constrained out-of-plane growth, thus facilitating the intricate color generation at the desired location via photopolymerization. Upon terminating polymerization by oxygen gas, the generated colors are readily fixed and kept stable. Utilizing programmed ultraviolet illumination, large-scale and high-resolution (≈1 µm) full-color printings are demonstrated at high speed (100 mm2 s-1 ).

19.
Artigo em Inglês | MEDLINE | ID: mdl-37751467

RESUMO

The adoption of dynamic mechanomodulation to regulate cellular behavior is an alternative to the use of chemical drugs, allowing spatiotemporal control. However, cell-selective targeting of mechanical stimuli is challenging due to the lack of strategies with which to convert macroscopic mechanical movements to different cellular responses. Here, we designed a nanoscale vibrating surface that controls cell behavior via selective repetitive cell deformation based on a poroelastic cell model. The vibrating indentations induce repetitive water redistribution in the cells with water redistribution rates faster than the vibrating rate; however, in the opposite case, cells perceive the vibrations as a one-time stimulus. The selective regulation of cell-cell adhesion through adjusting the frequency of nanovibration was demonstrated by suppression of cadherin expression in smooth muscle cells (fast water redistribution rate) with no change in vascular endothelial cells (slow water redistribution rate). This technique may provide a new strategy for cell-type-specific mechanical stimulation.

20.
Artigo em Inglês | MEDLINE | ID: mdl-35549004

RESUMO

As the demand for energy storage devices increases, the importance of electrolytes for supercapacitors (SCs) is further emphasized. However, since ions in electrolytes are always in an active state, it is difficult to store energy for a long time due to ion diffusion. Here, we have synthesized a phase-transitional ionogel and fabricated an SC based on the ionogel. The 1-ethyl-3-methylimidazolium nitrate ([EMIM]+[NO3]-) ionogel changes its phase from crystal to amorphous when the temperature was elevated above its phase transition temperature (∼44 °C). When the temperature is elevated from 25 to 45 °C, the resistivity of the gel is decreased from 2318.4 kΩ·cm to 43.2 Ω·cm. At the same time, the capacitance is boosted from 0.02 to 37.35 F g-1, and this change was repeatable. Furthermore, the SC exhibits an energy density of 7.77 Wh kg-1 with a power density of 4000 W kg-1 at 45 °C and shows a stable capacitance retention of 87.5% after 3000 cycles of test. The phase transition can switch the SCs from "operating mode" to "storage mode" when the temperature drops. A degree of self-discharge is greatly suppressed in the storage mode, storing 89.51% of charges after 24 h in self-discharge tests.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa