Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Biol Chem ; 300(7): 107448, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844135

RESUMO

O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is the sole enzyme that catalyzes all O-GlcNAcylation reactions intracellularly. Previous investigations have found that OGT levels oscillate during the cell division process. Specifically, OGT abundance is downregulated during mitosis, but the underlying mechanism is lacking. Here we demonstrate that OGT is ubiquitinated by the ubiquitin E3 ligase, anaphase promoting complex/cyclosome (APC/C)-cell division cycle 20 (Cdc20). We show that APC/CCdc20 interacts with OGT through a conserved destruction box (D-box): Arg-351/Leu-354, the abrogation of which stabilizes OGT. As APC/CCdc20-substrate binding is often preceded by a priming ubiquitination event, we also used mass spectrometry and mapped OGT Lys-352 to be a ubiquitination site, which is a prerequisite for OGT association with APC/C subunits. Interestingly, in The Cancer Genome Atlas, R351C is a uterine carcinoma mutant, suggesting that mutations of the D-box are linked with tumorigenesis. Paradoxically, we found that both R351C and the D-box mutants (R351A/L354A) inhibit uterine carcinoma in mouse xenograft models, probably due to impaired cell division and proliferation. In sum, we propose a model where OGT Lys-352 ubiquitination primes its binding with APC/C, and then APC/CCdc20 partners with OGT through the D-box for its mitotic destruction. Our work not only highlights the key mechanism that regulates OGT during the cell cycle, but also reveals the mutual coordination between glycosylation and the cell division machinery.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase , Mitose , N-Acetilglucosaminiltransferases , Ubiquitinação , Humanos , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Animais , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Camundongos , Proteólise , Células HeLa , Células HEK293 , Feminino
2.
J Am Chem Soc ; 146(2): 1532-1542, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38174923

RESUMO

Described here is a mild and stereoselective protocol for the synthesis of [3]dendralenes via the intermolecular dimerization of allenes. With the proper choice of a ruthenium catalyst, a range of unactivated 1,1-disubstituted allenes, without prefunctionalization in the allylic position, reacted efficiently to provide rapid access to densely substituted [3]dendralenes. An intermolecular C-C bond and three different types of C═C double bonds (di-, tri-, and tetrasubstituted) embedded in an acyclic structure were constructed with good to high E/Z stereocontrol. This is in contrast to the known catalytic protocols that focus on allenes with prefunctionalization at the allylic position and/or monosubstituted allenes, which would proceed by a different mechanism or require less stereocontrol. The silyl-substituted dendralene products are precursors of other useful dendralene molecules. Density functional theory (DFT) studies and control experiments supported a mechanism involving oxidative cyclometalation, ß-H elimination (the rate-determining step), and reductive elimination.

3.
J Am Chem Soc ; 146(4): 2779-2788, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38238317

RESUMO

Catalytic enantioselective α-chlorination of ketones is a highly desirable process. Different from the conventional approaches that employ corrosive electrophilic chlorination reagents, the process disclosed here employs nucleophilic chloride, aqueous NaCl solution, and even seawater, as green inexpensive chlorine sources. This mechanistically distinct and electronically opposite approach provides facile access to diverse highly enantioenriched acyclic α-chloro ketones that are less straightforward by conventional approaches. With a chiral thiourea catalyst, a range of racemic α-keto sulfonium salts underwent enantioconvergent carbon-chlorine bond formation with high efficiency and excellent enantioselectivity under mild conditions. The sulfonium motif plays a crucial triple role by permitting smooth dynamic kinetic resolution to take place via a chiral anion binding mechanism in a well-designed phase-transfer system. This protocol represents a new general platform for the asymmetric nucleophilic α-functionalization of carbonyl compounds.

4.
Small ; : e2401334, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804884

RESUMO

Lung cancer, a highly prevalent and lethal form of cancer, is often associated with oxidative stress. Photodynamic therapy (PDT) has emerged as a promising alternative therapeutic tool in cancer treatments, but its efficacy is closely correlated to the photosensitizers generating reactive oxygen species (ROS) and the antioxidant capacity of tumor cells. In particular, glutathione (GSH) can reduce the ROS and thus compromise PDT efficacy. In this study, a GSH-responsive near-infrared photosensitizer (TBPPN) based on aggregation-induced emission for real-time monitoring of GSH levels and enhanced PDT for lung cancer treatment is developed. The strategic design of TBPPN, consisting of a donor-acceptor structure and incorporation of dinitrobenzene, enables dual functionality by not only the fluorescence being activated by GSH but also depleting GSH to enhance the cytotoxic effect of PDT. TBPPN demonstrates synergistic PDT efficacy in vitro against A549 lung cancer cells by specifically targeting different cellular compartments and depleting intracellular GSH. In vivo studies further confirm that TBPPN can effectively inhibit tumor growth in a mouse model with lung cancer, highlighting its potential as an integrated agent for the diagnosis and treatment of lung cancer. This approach enhances the effectiveness of PDT for lung cancer and deserves further exploration of its potential for clinical application.

5.
J Org Chem ; 89(15): 10551-10556, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39016040

RESUMO

Palladium-catalyzed dipolar cycloaddition reactions represent an efficient strategy for the construction of cyclic compounds, with the development of novel dipolar precursors being a key focus. In this study, a new type of dipolar precursor was synthesized through the assembly of the vinylethylene carbonate unit and the tetrahydronaphthalene skeleton. This dipolar precursor can undergo [3 + 2], [5 + 4], and [5 + 2] cycloaddition reactions, leading to the construction of tetrahydronaphthalene-fused oxazolidin-2-ones, 1,5-oxazonines, and tetrahydrooxepines. In general, all of these reactions exhibited good reaction efficiency and functional group tolerance.

6.
J Org Chem ; 89(4): 2683-2690, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38314706

RESUMO

This report investigates the mechanism of photochemical Povarov-type reactions of N,N-dialkylanilines and maleimides in polar solvents (DMF or dioxane) in the presence of light. Fundamental aspects of the electron donor-acceptor (EDA) photoactivation pathway proposed to underpin this chemistry are examined through integrated experimental and computational studies. This approach provided evidence supporting the involvement of an EDA complex in facilitating this chemistry via a reaction mechanism that does not involve a triplet manifold. Most notably, our findings indicate that relying solely on UV-vis absorption spectroscopic data to either account for or predict reactivity in synthetic experiments may not always provide the complete picture. More specifically, this relates to considering UV-vis absorption spectroscopic data, calculated values for association constants (KEDA) and molar extinction coefficients (ε), with the reactivity observed in associated synthetic reactions in practice.

7.
Jpn J Clin Oncol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941323

RESUMO

BACKGROUND: Sarcopenic obesity (SO) affects outcomes in various malignancies. However, its clinical significance in patients undergoing neoadjuvant chemotherapy (NAC) for locally advanced gastric cancer (LAGC) remains unclear. This study investigated the impact of pre- and post-NAC SO on postoperative morbidity and survival. METHODS: Data from 207 patients with LAGC, who underwent NAC followed by radical gastrectomy between January 2010 and October 2019, were reviewed. Skeletal muscle mass and visceral fat area were measured pre- and post-NAC using computed tomography to define sarcopenia and obesity, the coexistence of which was defined as SO. RESULTS: Among the patients, 52 (25.1%) and 38 (18.4%) developed SO before and after NAC, respectively. Both pre- (34.6%) and post- (47.4%) NAC SO were associated with the highest postoperative morbidity rates; however, only post-NAC SO was an independent risk factor for postoperative morbidity [hazard ratio (HR) = 9.550, 95% confidence interval (CI) = 2.818-32.369; P < .001]. Pre-NAC SO was independently associated with poorer 3-year overall [46.2% vs. 61.3%; HR = 1.258 (95% CI = 1.023-1.547); P = .049] and recurrence-free [39.3% vs. 55.4%; HR 1.285 (95% CI 1.045-1.579); P = .017] survival. CONCLUSIONS: Pre-NAC SO was an independent prognostic factor in patients with LAGC undergoing NAC; post-NAC SO independently predicted postoperative morbidity.

8.
J Chem Phys ; 160(24)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38912624

RESUMO

This Special Issue of the Journal of Chemical Physics is dedicated to the work and life of John P. Perdew. A short bio is available within the issue [J. P. Perdew, J. Chem. Phys. 160, 010402 (2024)]. Here, we briefly summarize key publications in density functional theory by Perdew and his collaborators, followed by a structured guide to the papers contributed to this Special Issue.

9.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38341785

RESUMO

The enigmatic mechanism underlying unconventional high-temperature superconductivity, especially the role of lattice dynamics, has remained a subject of debate. Theoretical insights have long been hindered due to the lack of an accurate first-principles description of the lattice dynamics of cuprates. Recently, using the r2SCAN meta-generalized gradient approximation (meta-GGA) functional, we have been able to achieve accurate phonon spectra of an insulating cuprate YBa2Cu3O6 and discover significant magnetoelastic coupling in experimentally interesting Cu-O bond stretching optical modes [Ning et al., Phys. Rev. B 107, 045126 (2023)]. We extend this work by comparing Perdew-Burke-Ernzerhof and r2SCAN performances with corrections from the on-site Hubbard U and the D4 van der Waals (vdW) methods, aiming at further understanding on both the materials science side and the density functional side. We demonstrate the importance of vdW and self-interaction corrections for accurate first-principles YBa2Cu3O6 lattice dynamics. Since r2SCAN by itself partially accounts for these effects, the good performance of r2SCAN is now more fully explained. In addition, the performances of the Tao-Mo series of meta-GGAs, which are constructed in a different way from the strongly constrained and appropriately normed (SCAN) meta-GGA and its revised version r2SCAN, are also compared and discussed.

10.
J Chem Phys ; 160(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38180252

RESUMO

In density-functional theory, the exchange-correlation (XC) energy can be defined exactly through the coupling-constant (λ) averaged XC hole n̄xc(r,r'), representing the probability depletion of finding an electron at r' due to an electron at r. Accurate knowledge of n̄xc(r,r') has been crucial for developing XC energy density-functional approximations and understanding their performance for molecules and materials. However, there are very few systems for which accurate XC holes have been calculated since this requires evaluating the one- and two-particle reduced density matrices for a reference wave function over a range of λ while the electron density remains fixed at the physical (λ = 1) density. Although the coupled-cluster singles and doubles (CCSD) method can yield exact results for a two-electron system in the complete basis set limit, it cannot capture the electron-electron cusp using finite basis sets. Focusing on Hooke's atom as a two-electron model system for which certain analytic solutions are known, we examine the effect of this cusp error on the XC hole calculated using CCSD. The Lieb functional is calculated at a range of coupling constants to determine the λ-integrated XC hole. Our results indicate that, for Hooke's atoms, the error introduced by the description of the electron-electron cusp using Gaussian basis sets at the CCSD level is negligible compared to the basis set incompleteness error. The system-, angle-, and coupling-constant-averaged XC holes are also calculated and provide a benchmark against which the Perdew-Burke-Ernzerhof and local density approximation XC hole models are assessed.

11.
J Chem Phys ; 160(13)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38557836

RESUMO

VO2 is renowned for its electric transition from an insulating monoclinic (M1) phase, characterized by V-V dimerized structures, to a metallic rutile (R) phase above 340 K. This transition is accompanied by a magnetic change: the M1 phase exhibits a non-magnetic spin-singlet state, while the R phase exhibits a state with local magnetic moments. Simultaneous simulation of the structural, electric, and magnetic properties of this compound is of fundamental importance, but the M1 phase alone has posed a significant challenge to the density functional theory (DFT). In this study, we show none of the commonly used DFT functionals, including those combined with on-site Hubbard U to treat 3d electrons better, can accurately predict the V-V dimer length. The spin-restricted method tends to overestimate the strength of the V-V bonds, resulting in a small V-V bond length. Conversely, the spin-symmetry-breaking method exhibits the opposite trends. Each of these two bond-calculation methods underscores one of the two contentious mechanisms, i.e., Peierls lattice distortion or Mott localization due to electron-electron repulsion, involved in the metal-insulator transition in VO2. To elucidate the challenges encountered in DFT, we also employ an effective Hamiltonian that integrates one-dimensional magnetic sites, thereby revealing the inherent difficulties linked with the DFT computations.

12.
J Chem Phys ; 160(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38189614

RESUMO

The recent development of accurate and efficient semilocal density functionals on the third rung of Jacob's ladder of density functional theory, such as the revised regularized strongly constrained and appropriately normed (r2SCAN) density functional, could enable rapid and highly reliable prediction of the elasticity and temperature dependence of thermophysical parameters of refractory elements and their intermetallic compounds using the quasi-harmonic approximation (QHA). Here, we present a comparative evaluation of equilibrium cell volumes, cohesive energy, mechanical moduli, and thermophysical properties (Debye temperature and thermal expansion coefficient) for 22 transition metals using semilocal density functionals, including the local density approximation (LDA), Perdew-Burke-Ernzerhof (PBE) and PBEsol generalized gradient approximations (GGAs), and the r2SCAN meta-GGA. PBEsol and r2SCAN deliver the same level of accuracies for structural, mechanical, and thermophysical properties. PBE and r2SCAN perform better than LDA and PBEsol for calculating cohesive energies of transition metals. Among the tested density functionals, r2SCAN provides an overall well-balanced performance for reliably computing cell volumes, cohesive energies, mechanical properties, and thermophysical properties of various 3d, 4d, and 5d transition metals using QHA. Therefore, we recommend that r2SCAN could be employed as a workhorse method to evaluate thermophysical properties of transition metal compounds and alloys in high throughput workflows.

13.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 427-439, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38327186

RESUMO

Mitochondrial homeostasis plays a pivotal role in oocyte maturation and embryonic development. Deoxyguanosine kinase (DGUOK) is a nucleoside kinase that salvages purine nucleosides in mitochondria and is critical for mitochondrial DNA replication and homeostasis in non-proliferating cells. Dguok loss-of-function mutations and deletions lead to hepatocerebral mitochondrial DNA deletion syndrome. However, its potential role in reproduction remains largely unknown. In this study, we find that Dguok knockout results in female infertility. Mechanistically, DGUOK deficiency hinders ovarian development and oocyte maturation. Moreover, DGUOK deficiency in oocytes causes a significant reduction in mitochondrial DNA copy number and abnormal mitochondrial dynamics and impairs germinal vesicle breakdown. Only few DGUOK-deficient oocytes can extrude their first polar body during in vitro maturation, and these oocytes exhibit irregular chromosome arrangements and different spindle lengths. In addition, DGUOK deficiency elevates reactive oxygen species levels and accelerates oocyte apoptosis. Our findings reveal novel physiological roles for the mitochondrial nucleoside salvage pathway in oocyte maturation and implicate DGUOK as a potential marker for the diagnosis of female infertility.


Assuntos
Infertilidade Feminina , Doenças Mitocondriais , Fosfotransferases (Aceptor do Grupo Álcool) , Humanos , Gravidez , Camundongos , Feminino , Animais , Infertilidade Feminina/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oócitos/metabolismo , Fertilidade/genética
14.
Angew Chem Int Ed Engl ; 63(28): e202401261, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38687258

RESUMO

Aggregation is a conventional method to enhance the quantum yields (QYs) of pure organic luminophores due to the restriction of intramolecular motions (RIM). However, how to realize RIM in metal-organic frameworks (MOFs) is still unclear and challenging. In this work, the ligand meta-anchoring strategy is first proposed and proved to be an effective and systematic approach to restrict the intramolecular motions of MOFs for the QY improvement. By simply shifting the substituent position in the ligand from para to meta, the QY of the resulting MOF is significantly enhanced by eleven-fold. The value is even higher than that of ligand aggregates, demonstrating the strong RIM effect of this ligand meta-anchoring strategy. The introduction of co-ligand induces the appearance of visible yellow room temperature phosphorescence with a lifetime of 222 ms due to the QY enhancement and the charge transfer between the donor and accepter units. The present work thus broadens the understanding of the RIM mechanism from a new perspective, develops a novel method to realize RIM and expands the applicable objects from pure organic materials to organic-inorganic hybrid materials.

15.
Angew Chem Int Ed Engl ; 63(34): e202407307, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38868977

RESUMO

Small organic photothermal agents (PTAs) with absorption bands located in the second near-infrared (NIR-II, 1000-1700 nm) window are highly desirable for effectively combating deep-seated tumors. However, the rarely reported NIR-II absorbing PTAs still suffer from a low molar extinction coefficient (MEC, ϵ), inadequate chemostability and photostability, as well as the high light power density required during the therapeutic process. Herein, we developed a series of boron difluoride bridged azafulvene dimer acceptor-integrated small organic PTAs. The B-N coordination bonds in the π-conjugated azafulvene dimer backbone endow it the strong electron-withdrawing ability, facilitating the vigorous donor-acceptor-donor (D-A-D) structure PTAs with NIR-II absorption. Notably, the PTA namely OTTBF shows high MEC (7.21×104 M-1 cm-1), ultrahigh chemo- and photo-stability. After encapsulated into water-dispersible nanoparticles, OTTBF NPs can achieve remarkable photothermal conversion effect under 1064 nm irradiation with a light density as low as 0.7 W cm-2, which is the lowest reported NIR-II light power used in PTT process as we know. Furthermore, OTTBF NPs have been successfully applied for in vitro and in vivo deep-seated cancer treatments under 1064 nm laser. This study provides an insight into the future exploration of versatile D-A-D structured NIR-II absorption organic PTAs for biomedical applications.


Assuntos
Compostos de Boro , Lasers , Terapia Fototérmica , Compostos de Boro/química , Camundongos , Animais , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Dimerização , Estrutura Molecular , Linhagem Celular Tumoral , Compostos Aza/química , Ensaios de Seleção de Medicamentos Antitumorais , Sobrevivência Celular/efeitos dos fármacos , Raios Infravermelhos , Proliferação de Células/efeitos dos fármacos
16.
Angew Chem Int Ed Engl ; 63(29): e202404142, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38715431

RESUMO

Fluorescent imaging and biosensing in the near-infrared-II (NIR-II) window holds great promise for non-invasive, radiation-free, and rapid-response clinical diagnosis. However, it's still challenging to develop bright NIR-II fluorophores. In this study, we report a new strategy to enhance the brightness of NIR-II aggregation-induced emission (AIE) fluorophores through intramolecular electrostatic locking. By introducing sulfur atoms into the side chains of the thiophene bridge in TSEH molecule, the molecular motion of the conjugated backbone can be locked through intramolecular interactions between the sulfur and nitrogen atoms. This leads to enhanced NIR-II fluorescent emission of TSEH in both solution and aggregation states. Notably, the encapsulated nanoparticles (NPs) of TSEH show enhanced brightness, which is 2.6-fold higher than TEH NPs with alkyl side chains. The in vivo experiments reveal the feasibility of TSEH NPs in vascular and tumor imaging with a high signal-to-background ratio and precise resection for tiny tumors. In addition, polystyrene nanospheres encapsulated with TSEH are utilized for antigen detection in lateral flow assays, showing a signal-to-noise ratio 1.9-fold higher than the TEH counterpart in detecting low-concentration antigens. This work highlights the potential for developing bright NIR-II fluorophores through intramolecular electrostatic locking and their potential applications in clinical diagnosis and biomedical research.


Assuntos
Corantes Fluorescentes , Raios Infravermelhos , Imagem Óptica , Eletricidade Estática , Corantes Fluorescentes/química , Humanos , Nanopartículas/química , Tiofenos/química , Animais , Camundongos , Estrutura Molecular
17.
Heliyon ; 10(9): e30678, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38765127

RESUMO

Cellular Automaton (CA) is widely used because of its ability to simulate complex spatiotemporal dynamic processes through applying simple rules. The basis of the CA model is the definition of transformation rules. During a simulation process, the rules determine the change of the cell state. However, existing processing methods calculate the driving factors based on single-point time (start time or end time), making it difficult to reflect the fact that numerous driving factors affecting the cell conversion dynamically change with time. Based on the time dynamics perspective and the data set of multiple time series, this paper designs a method of dynamic adjustment of driving factors of urban expansion on the local cell-scale. It uses linear, exponential, logarithmic, and polynomial fitting to develop a CA model of dynamic adjustment that conforms to the characteristics of local spatial evolution. The main conclusions of the paper are as follows: (1) The polynomial fitting has the highest average R2, indicating that the driving factors experiences large fluctuations over time; (2) Secondly, the simulation result kappa obtained by the four fitting methods is between 0.781-0.810, which is higher than the simulation accuracy obtained by using only a single time point. In other words, the factor does not dynamically fit with time and (3) The fitting accuracy of road density is a key indicator of correct and incorrect simulation parts of construction land. Our results demonstrate that the precision of the CA model may be significantly improved by capturing the time development law of environmental variables affecting urban development at the micro-scale.

18.
Front Bioeng Biotechnol ; 12: 1351787, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562672

RESUMO

Nanotechnology is revolutionising different areas from manufacturing to therapeutics in the health field. Carbon nanotubes (CNTs), a promising drug candidate in nanomedicine, have attracted attention due to their excellent and unique mechanical, electronic, and physicochemical properties. This emerging nanomaterial has attracted a wide range of scientific interest in the last decade. Carbon nanotubes have many potential applications in cancer therapy, such as imaging, drug delivery, and combination therapy. Carbon nanotubes can be used as carriers for drug delivery systems by carrying anticancer drugs and enabling targeted release to improve therapeutic efficacy and reduce adverse effects on healthy tissues. In addition, carbon nanotubes can be combined with other therapeutic approaches, such as photothermal and photodynamic therapies, to work synergistically to destroy cancer cells. Carbon nanotubes have great potential as promising nanomaterials in the field of nanomedicine, offering new opportunities and properties for future cancer treatments. In this paper, the main focus is on the application of carbon nanotubes in cancer diagnostics, targeted therapies, and toxicity evaluation of carbon nanotubes at the biological level to ensure the safety and real-life and clinical applications of carbon nanotubes.

19.
Org Lett ; 26(1): 421-426, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38166166

RESUMO

Silylium ions are versatile Lewis acids in organic synthesis. While they have been well-known for the activation of σ donors, catalysis initiated by the activation of π donors remains underdeveloped, particularly for alkynes. Herein, we demonstrate an example of silylium-catalyzed alkyne heterodifunctionalization. The silylium ion generated in situ from HNTf2 and the silyl reagent serve as superior catalysts in the efficient silylphosphination and silylcyanation of electron-rich alkynes with excellent regio- and stereoselectivity. The compatibility of this protocol with strongly coordinating ligands (Ph2P and CN) not only complements the metal-catalyzed systems but also expands the scope of silylium-catalyzed reactions.

20.
Chem Sci ; 15(11): 3893-3900, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38487218

RESUMO

Compared with well-developed construction of Csp2-Csp2 atropisomers, the synthesis of Csp2-N atropisomers remains in its infancy, which is recognized as both appealing and challenging. Herein, we achieved the first organocatalyzed asymmetric synthesis of Csp2-N atropisomers by formal Csp2-O amination. With the aid of a suitable acid, 3-alkynyl-3-hydroxyisoindolinones reacted smoothly with 1-methylnaphthalen-2-ols to afford a wide range of atropisomers by selective formation of the Csp2-N axis. Particularly, both the kinetic (Z)-products and the thermodynamic (E)-products could be selectively formed. Furthermore, the rarely used combination of two chiral Brønsted acid catalysts achieved excellent enantiocontrol, which is intriguing and unusual in organocatalysis. Based on control experiments and DFT calculations, a cascade dehydration/addition/rearrangement process was proposed. More importantly, this work provided a new plat-form for direct atroposelective construction of the chiral Csp2-N axis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa